Hostname: page-component-54dcc4c588-64p75 Total loading time: 0 Render date: 2025-10-01T09:51:11.726Z Has data issue: false hasContentIssue false

Explicit theory of moving contact lines

Published online by Cambridge University Press:  23 September 2025

Jun Luo
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Peng Gao*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
*
Corresponding author: Peng Gao, gaopeng@ustc.edu.cn

Abstract

The interface shape near a moving contact line is described by the Cox–Voinov theory, which contains a constant term that is not trivially obtained. In this work, an approximate expression of this term in explicit form is derived under the condition of a Navier slip. Introducing the approximation of a local slippery wedge flow, we first propose a novel form of the generalised lubrication equation. A matched asymptotic analysis of this equation yields the Cox–Voinov relation with the constant term expressed in elementary functions. For various viscosity ratios and contact angles, the theoretical predictions are rigorously validated against full numerical solutions of the Stokes equations and available asymptotic results.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Benilov, E.S. & Benilov, M.S. 2015 A thin drop sliding down an inclined plate. J. Fluid Mech. 773, 75102.10.1017/jfm.2015.226CrossRefGoogle Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.10.1103/RevModPhys.81.739CrossRefGoogle Scholar
Buckingham, R., Shearer, M. & Bertozzi, A. 2003 Thin film traveling waves and the Navier slip condition. SIAM J. Appl. Maths 63, 722744.Google Scholar
Chan, T.S., Kamal, C., Snoeijer, J.H., Sprittles, J.E. & Eggers, J. 2020 Cox–Voinov theory with slip. J. Fluid Mech. 900, A8.10.1017/jfm.2020.499CrossRefGoogle Scholar
Chan, T.S., Srivastava, S., Marchand, A., Andreotti, B., Biferale, L., Toschi, F. & Snoeijer, J.H. 2013 Hydrodynamics of air entrainment by moving contact lines. Phys. Fluids 25, 074105.10.1063/1.4814466CrossRefGoogle Scholar
Cox, R.G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.10.1017/S0022112086000332CrossRefGoogle Scholar
Hocking, L.M. 1977 A moving fluid interface. Part 2. The removal of the force singularity by a slip flow. J. Fluid Mech. 79, 209229.10.1017/S0022112077000123CrossRefGoogle Scholar
Hocking, L.M. 1983 The spreading of a thin drop by gravity and capillarity. Q. J. Mech. Appl. Math. 36, 5569.10.1093/qjmam/36.1.55CrossRefGoogle Scholar
Hocking, L.M. & Rivers, A.D. 1982 The spreading of a drop by capillary action. J. Fluid Mech. 121, 425442.10.1017/S0022112082001979CrossRefGoogle Scholar
Huh, C. & Scriven, L.E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.10.1016/0021-9797(71)90188-3CrossRefGoogle Scholar
Keeler, J.S., Lockerby, D.A., Kumar, S. & Sprittles, J.E. 2022 Stability and bifurcation of dynamic contact lines in two dimensions. J. Fluid Mech. 945, A34.10.1017/jfm.2022.526CrossRefGoogle Scholar
Ming, H., Qin, J. & Gao, P. 2023 Early stage of bubble spreading in a viscous ambient liquid. J. Fluid Mech. 964, A41.10.1017/jfm.2023.404CrossRefGoogle Scholar
Oron, A., Davis, S.H. & Bankoff, S.G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931980.10.1103/RevModPhys.69.931CrossRefGoogle Scholar
Sibley, D.N., Nold, A., Savva, N. & Kalliadasis, S. 2015 A comparison of slip, disjoining pressure, and interface formation models for contact line motion through asymptotic analysis of thin two-dimensional droplet spreading. J. Eng. Math. 94, 1941.10.1007/s10665-014-9702-9CrossRefGoogle Scholar
Snoeijer, J.H. 2006 Free-surface flows with large slopes: beyond lubrication theory. Phys. Fluids 18 (2), 021701.10.1063/1.2171190CrossRefGoogle Scholar
Snoeijer, J.H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.10.1146/annurev-fluid-011212-140734CrossRefGoogle Scholar
Solomenko, Z., Spelt, P.D.M. & Alix, P. 2017 A level-set method for large-scale simulations of three-dimensional flows with moving contact lines. J. Comput. Phys. 348, 151170.10.1016/j.jcp.2017.07.011CrossRefGoogle Scholar
Sprittles, J.E. 2015 Air entrainment in dynamic wetting: Knudsen effects and the influence of ambient air pressure. J. Fluid Mech. 769, 444481.10.1017/jfm.2015.121CrossRefGoogle Scholar
Sui, Y., Ding, H. & Spelt, P.D.M. 2014 Numerical simulations of flows with moving contact lines. Annu. Rev. Fluid Mech. 46, 97119.10.1146/annurev-fluid-010313-141338CrossRefGoogle Scholar
Sui, Y. & Spelt, P.D.M. 2013 An efficient computational model for macroscale simulations of moving contact lines. J. Comput. Phys. 242, 3752.10.1016/j.jcp.2013.02.005CrossRefGoogle Scholar
Vandre, E., Carvalho, M.S. & Kumar, S. 2012 Delaying the onset of dynamic wetting failure through meniscus confinement. J. Fluid Mech. 707, 496520.10.1017/jfm.2012.295CrossRefGoogle Scholar
Voinov, O.V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11, 714721.10.1007/BF01012963CrossRefGoogle Scholar
Zhang, Z. & Gao, P. 2024 Boundary element simulations of dynamic wetting with a mesoscale contact line model. Phys. Fluids 36 (12), 122104.10.1063/5.0237962CrossRefGoogle Scholar
Supplementary material: File

Luo and Gao supplementary material

Luo and Gao supplementary material
Download Luo and Gao supplementary material(File)
File 14.4 MB