Hostname: page-component-6bb9c88b65-xjl2h Total loading time: 0 Render date: 2025-07-26T10:42:25.090Z Has data issue: false hasContentIssue false

Experimental study of velocity statistics in wall-bounded turbulent emulsions

Published online by Cambridge University Press:  13 May 2025

Yaning Fan
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
Yi-Bao Zhang
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
Jinghong Su
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
Lei Yi
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China Department of Physics, University of Massachusetts, Amherst, MA 01003, USA
Cheng Wang
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China ENS de Lyon, CNRS, Laboratoire de physique, Lyon F-69342, France
Chao Sun*
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
*
Correspondence author: Chao Sun, chaosun@tsinghua.edu.cn

Abstract

Turbulent emulsions are ubiquitous in chemical engineering, food processing, pharmaceuticals and other fields. However, our experimental understanding of this area remains limited due to the multiscale nature of turbulent flow and the presence of extensive interfaces, which pose significant challenges to optical measurements. In this study, we address these challenges by precisely matching the refractive indices of the continuous and dispersed phases, enabling us to measure local velocity information at high volume fractions. The emulsion is generated in a turbulent Taylor–Couette flow, with velocity measured at two radial locations: near the inner cylinder (boundary layer) and in the middle gap (bulk region). Near the inner cylinder, the presence of droplets suppresses the emission of angular velocity plumes, which reduces the mean azimuthal velocity and its root mean squared fluctuation. The former effect leads to a higher angular velocity gradient in the boundary layer, resulting in greater global drag on the system. In the bulk region, although droplets suppress turbulence fluctuations, they enhance the cross-correlation between azimuthal and radial velocities, leaving the angular velocity flux contributed by the turbulent flow nearly unchanged. In both locations, droplets suppress turbulence at scales larger than the average droplet diameter and increase the intermittency of velocity increments. However, the effects of the droplets are more pronounced near the inner cylinder than in the bulk, likely because droplets fragment in the boundary layer but are less prone to break up in the bulk. Our study provides experimental insights into how dispersed droplets modulate global drag, coherent structures and the multiscale characteristics of turbulent flow.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Yaning Fan, Yi-Bao Zhang contributed equally to this work.

References

Amini, N. & Hassan, Y.A. 2012 An investigation of matched index of refraction technique and its application in optical measurements of fluid flow. Exp. Fluids 53 (6), 20112020.CrossRefGoogle Scholar
Bakhuis, D., Ezeta, R., Bullee, P.A., Marin, A., Lohse, D., Sun, C. & Huisman, S.G. 2021 Catastrophic phase inversion in high-Reynolds-number turbulent Taylor–Couette flow. Phys. Rev. Lett. 126 (6), 064501.CrossRefGoogle ScholarPubMed
Begemann, A., Trummler, T., Trautner, E., Hasslberger, J. & Klein, M. 2022 Effect of turbulence intensity and surface tension on the emulsification process and its stationary state—A numerical study. Can. J. Chem. Engng 100 (12), 35483561.CrossRefGoogle Scholar
Brauckmann, H.J. & Eckhardt, B. 2013 Direct numerical simulations of local and global torque in Taylor–Couette flow up to Re = 30 000. J. Fluid Mech. 718, 398427.CrossRefGoogle Scholar
Brauckmann, H.J., Salewski, M. & Eckhardt, B. 2016 Momentum transport in Taylor–Couette flow with vanishing curvature. J. Fluid Mech. 790, 419452.CrossRefGoogle Scholar
Budwig, R. 1994 Refractive index matching methods for liquid flow investigations. Exp. Fluids 17 (5), 350355.CrossRefGoogle Scholar
Burin, M.J., Schartman, E. & Ji, H. 2010 Local measurements of turbulent angular momentum transport in circular Couette flow. Exp. Fluids 48 (5), 763769.CrossRefGoogle Scholar
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.-Z., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.CrossRefGoogle Scholar
Conan, C., Masbernat, O., Décarre, S. & Liné, A. 2007 Local hydrodynamics in a dispersed-stratified liquid–liquid pipe flow. AICHE J. 53 (11), 27542768.CrossRefGoogle Scholar
Crialesi-Esposito, M., Boffetta, G., Brandt, L., Chibbaro, S. & Musacchio, S. 2023 a Intermittency in turbulent emulsions. J. Fluid Mech. 972, A37.CrossRefGoogle Scholar
Crialesi-Esposito, M., Chibbaro, S. & Brandt, L. 2023 b The interaction of droplet dynamics and turbulence cascade. Commun. Phys. 6 (1), 5.CrossRefGoogle Scholar
Crialesi-Esposito, M., Boffetta, G., Brandt, L., Chibbaro, S. & Musacchio, S. 2024 How small droplets form in turbulent multiphase flows. Phys. Rev. Fluids 9 (7), L072301.CrossRefGoogle Scholar
Crialesi-Esposito, M., Rosti, M.E., Chibbaro, S. & Brandt, L. 2022 Modulation of homogeneous and isotropic turbulence in emulsions. J. Fluid Mech. 940, A19.CrossRefGoogle Scholar
Dodd, M.S. & Ferrante, A. 2016 On the interaction of Taylor length scale size droplets and isotropic turbulence. J. Fluid Mech. 806, 356412.CrossRefGoogle Scholar
Dong, S. 2007 Direct numerical simulation of turbulent Taylor–Couette flow. J. Fluid Mech. 587, 373393.CrossRefGoogle Scholar
Durst, F., Jovanović, J. & Sender, J. 1995 LDA measurements in the near-wall region of a turbulent pipe flow. J. Fluid Mech. 295, 305335.CrossRefGoogle Scholar
Eckhardt, B., Grossmann, S. & Lohse, D. 2007 a Fluxes and energy dissipation in thermal convection and shear flows. Europhys. Lett. 78 (2), 24001.CrossRefGoogle Scholar
Eckhardt, B., Grossmann, S. & Lohse, D. 2007 b Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.CrossRefGoogle Scholar
Emran, M.S. & Schumacher, J. 2008 Fine-scale statistics of temperature and its derivatives in convective turbulence. J. Fluid Mech. 611, 1334.CrossRefGoogle Scholar
Eskin, D., Taylor, S.D. & Yang, D. 2017 Modeling of droplet dispersion in a turbulent Taylor–Couette flow. Chem. Engng Sci. 161, 3647.CrossRefGoogle Scholar
Ezeta, R., Huisman, S.G., Sun, C. & Lohse, D. 2018 Turbulence strength in ultimate Taylor–Couette turbulence. J. Fluid Mech. 836, 397412.CrossRefGoogle Scholar
Froitzheim, A., Ezeta, R., Huisman, S.G., Merbold, S., Sun, C., Lohse, D. & Egbers, C. 2019 Statistics, plumes and azimuthally travelling waves in ultimate Taylor–Couette turbulent vortices. J. Fluid Mech. 876, 733765.CrossRefGoogle Scholar
Froitzheim, A., Merbold, S. & Egbers, C. 2017 Velocity profiles, flow structures and scalings in a wide-gap turbulent Taylor–Couette flow. J. Fluid Mech. 831, 330357.CrossRefGoogle Scholar
Girifalco, L.A. & Good, R.J. 1957 A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. J. Phys. Chem. 61 (7), 904909.CrossRefGoogle Scholar
Gopalan, B. & Katz, J. 2010 Turbulent shearing of crude oil mixed with dispersants generates long microthreads and microdroplets. Phys. Rev. Lett. 104 (5), 054501.CrossRefGoogle ScholarPubMed
Grossmann, S., Lohse, D. & Sun, C. 2016 High–Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48 (1), 5380.CrossRefGoogle Scholar
Hinze, J.O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AICHE J. 1 (3), 289295.CrossRefGoogle Scholar
Hori, N., Ng, C.S., Lohse, D. & Verzicco, R. 2023 Interfacial-dominated torque response in liquid–liquid Taylor–Couette flows. J. Fluid Mech. 956, A15.CrossRefGoogle Scholar
Huisman, S.G., van Gils, D.P.M., Grossmann, S., Sun, C. & Lohse, D. 2012 a Ultimate turbulent Taylor–Couette flow. Phys. Rev. Lett. 108 (2), 024501.CrossRefGoogle ScholarPubMed
Huisman, S.G., van Gils, D.P.M. & Sun, C. 2012 b Applying laser Doppler anemometry inside a Taylor–Couette geometry using a ray-tracer to correct for curvature effects. Eur. J. Mech. B/Fluids 36, 115119.CrossRefGoogle Scholar
Huisman, S.G., Lohse, D. & Sun, C. 2013 a Statistics of turbulent fluctuations in counter-rotating Taylor–Couette flows. Phys. Rev. E 88 (6), 063001.CrossRefGoogle ScholarPubMed
Huisman, S.G., Scharnowski, S., Cierpka, C., Kähler, C.J., Lohse, D. & Sun, C. 2013 b Logarithmic boundary layers in strong Taylor–Couette turbulence. Phys. Rev. Lett. 110 (26), 264501.CrossRefGoogle ScholarPubMed
Ibarra, R., Matar, O.K. & Markides, C.N. 2021 Experimental investigations of upward-inclined stratified oil-water flows using simultaneous two-line planar laser-induced fluorescence and particle velocimetry. Intl J. Multiphase Flow 135, 103502.CrossRefGoogle Scholar
Ibarra, R., Zadrazil, I., Matar, O.K. & Markides, C.N. 2018 Dynamics of liquid–liquid flows in horizontal pipes using simultaneous two–line planar laser–induced fluorescence and particle velocimetry. Intl J. Multiphase Flow 101, 4763.CrossRefGoogle Scholar
Kilpatrick, P.K. 2012 Water-in-crude oil emulsion stabilization: review and unanswered questions. Energy Fuels 26 (7), 40174026.CrossRefGoogle Scholar
Kokal, S. 2005 Crude-oil emulsions: a state-of-the-art review. SPE Prod. Facilities 20 (01), 513.CrossRefGoogle Scholar
Kolmogorov, A.N. 1949 On the disintegration of drops by turbulent flows. Dokl. Akad. Nauk SSSR 66, 825828.Google Scholar
Kumara, W.A.S., Halvorsen, B.M. & Melaaen, M.C. 2010 Particle image velocimetry for characterizing the flow structure of oil–water flow in horizontal and slightly inclined pipes. Chem. Engng Sci. 65 (15), 43324349.CrossRefGoogle Scholar
Kurtz, S.S. Jr. & Ward, A.L. 1936 The refractivity intercept and the specific refraction equation of Newton. I. development of the refractivity intercept and comparison with specific refraction equations. J. Franklin Inst. 222 (5), 563592.CrossRefGoogle Scholar
Lee, L.H. 1993 Scope and limitations of the equation of state approach for interfacial tensions. Langmuir 9 (7), 18981905.CrossRefGoogle Scholar
Lemenand, T., Della Valle, D., Dupont, P. & Peerhossaini, H. 2017 Turbulent spectrum model for drop-breakup mechanisms in an inhomogeneous turbulent flow. Chem. Engng Sci. 158, 4149.CrossRefGoogle Scholar
Levich, V.G. 1962 Physicochemical Hydrodynamics. Prentice-Hall Inc.Google Scholar
Li, M. & Garrett, C. 1998 The relationship between oil droplet size and upper ocean turbulence. Mar. Pollut. Bull. 36 (12), 961970.CrossRefGoogle Scholar
Mandal, A., Samanta, A., Bera, A. & Ojha, K. 2010 Characterization of oil–water emulsion and its use in enhanced oil recovery. Ind. Engng Chem. Res. 49 (24), 1275612761.CrossRefGoogle Scholar
McClements, D.J. 2004 Food Emulsions: Principles, Practices, and Techniques. CRC.CrossRefGoogle Scholar
Morgan, R.G., Markides, C.N., Zadrazil, I. & Hewitt, G.F. 2013 Characteristics of horizontal liquid–liquid flows in a circular pipe using simultaneous high-speed laser-induced fluorescence and particle velocimetry. Intl J. Multiphase Flow 49, 99118.CrossRefGoogle Scholar
Mukherjee, S., Safdari, A., Shardt, O., Kenjereš, S. & Van den Akker, H.E.A. 2019 Droplet–turbulence interactions and quasi-equilibrium dynamics in turbulent emulsions. J. Fluid Mech. 878, 221276.CrossRefGoogle Scholar
Newton, I. 1704 Opticks: Or, A treatise of the reflections, refractions, inflexions and colours of light.CrossRefGoogle Scholar
Ni, R. 2024 Deformation and breakup of bubbles and drops in turbulence. Annu. Rev. Fluid Mech. 56 (1), 319347.CrossRefGoogle Scholar
Perlekar, P. 2019 Kinetic energy spectra and flux in turbulent phase-separating symmetric binary-fluid mixtures. J. Fluid Mech. 873, 459474.CrossRefGoogle Scholar
Perlekar, P., Benzi, R., Clercx, H.J.H., Nelson, D.R. & Toschi, F. 2014 Spinodal decomposition in homogeneous and isotropic turbulence. Phys. Rev. Lett. 112 (1), 014502.CrossRefGoogle ScholarPubMed
Perlekar, P., Biferale, L., Sbragaglia, M., Srivastava, S. & Toschi, F. 2012 Droplet size distribution in homogeneous isotropic turbulence. Phys. Fluids 24 (6), 065101.CrossRefGoogle Scholar
Piela, K., Delfos, R., Ooms, G., Westerweel, J. & Oliemans, R.V.A. 2008 On the phase inversion process in an oil–water pipe flow. Intl J. Multiphase Flow 34 (7), 665677.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Procaccia, I., Ching, E.S.C., Constantin, P., Kadanoff, L.P., Libchaber, A. & Wu, X.-Z. 1991 Transitions in convective turbulence: the role of thermal plumes. Phys. Rev. A 44 (12), 80918102.CrossRefGoogle ScholarPubMed
Reis, J.C.R., Lampreia, I.M.S., Santos, Â.F.S., Moita, M.L.C.J. & Douhéret, G. 2010 Refractive index of liquid mixtures: theory and experiment. Chem. Phys. Chem. 11 (17), 37223733.CrossRefGoogle ScholarPubMed
Risso, F. & Fabre, J. 1998 Oscillations and breakup of a bubble immersed in a turbulent field. J. Fluid Mech. 372, 323355.CrossRefGoogle Scholar
Roccon, A., De Paoli, M., Zonta, F. & Soldati, A. 2017 Viscosity-modulated breakup and coalescence of large drops in bounded turbulence. Phys. Rev. Fluids 2 (8), 083603.CrossRefGoogle Scholar
Rosti, M.E., Ge, Z., Jain, S.S., Dodd, M.S. & Brandt, L. 2019 Droplets in homogeneous shear turbulence. J. Fluid Mech. 876, 962984.CrossRefGoogle Scholar
Shang, X.-D., Qiu, X.-L., Tong, P. & Xia, K.-Q. 2003 Measured local heat transport in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 90 (7), 074501.CrossRefGoogle ScholarPubMed
Spernath, A. & Aserin, A. 2006 Microemulsions as carriers for drugs and nutraceuticals. Adv. Colloid Interface Sci. 128, 4764.CrossRefGoogle ScholarPubMed
Su, J., Wang, C., Zhang, Y.-B., Xu, F., Wang, J. & Sun, C. 2024 a Turbulence modulation in liquid–liquid two-phase Taylor–Couette turbulence. J. Fluiid Mech. 999, A98.CrossRefGoogle Scholar
Su, J., Yi, L., Zhao, B., Wang, C., Xu, F., Wang, J. & Sun, C. 2024 b Numerical study on the mechanism of drag modulation by dispersed drops in two-phase Taylor–Couette turbulence. J. Fluiid Mech. 984, R3.CrossRefGoogle Scholar
Su, J., Zhang, Y.-B., Wang, C., Yi, L., Xu, F., Fan, Y., Wang, J. & Sun, C. 2025 How interfacial tension enhances drag in turbulent Taylor–Couette flow with neutrally buoyant and equally viscous droplets. J. Fluid Mech. 1002, A2.CrossRefGoogle Scholar
Trefftz-Posada, P. & Ferrante, A. 2023 On the interaction of Taylor length-scale size droplets and homogeneous shear turbulence. J. Fluid Mech. 972, A9.CrossRefGoogle Scholar
Wang, C., DeGroot, C.T. & Floryan, J.M. 2023 Numerical simulation of drag reduction for turbulent flow in cylindrical annuli with axial corrugations. Trans. Can. Soc. Mech. Engng 48 (1), 164172.CrossRefGoogle Scholar
Wang, C., Yi, L., Jiang, L. & Sun, C. 2022 a How do the finite-size particles modify the drag in Taylor–Couette turbulent flow. J. Fluid Mech. 937, A15.CrossRefGoogle Scholar
Wang, C., Yi, L., Jiang, L. & Sun, C. 2022 b Turbulence drag modulation by dispersed droplets in Taylor–Couette flow: the effects of the dispersed phase viscosity. J. Fluid Mech. 952, A39.CrossRefGoogle Scholar
Wiederseiner, S., Andreini, N., Epely-Chauvin, G. & Ancey, C. 2011 Refractive-index and density matching in concentrated particle suspensions: a review. Exp. Fluids 50 (5), 11831206.CrossRefGoogle Scholar
Wright, S.F., Zadrazil, I. & Markides, C.N. 2017 A review of solid–fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid–liquid and multiphase solid–liquid flows. Exp. Fluids 58 (9), 139.CrossRefGoogle Scholar
Yakhot, V. 1989 Probability distributions in high-Rayleigh number Bénard convection. Phys. Rev. Lett. 63 (18), 19651967.CrossRefGoogle ScholarPubMed
Yi, L., Girotto, I., Toschi, F. & Sun, C. 2024 Divergence of critical fluctuations on approaching catastrophic phase inversion in turbulent emulsions. Phys. Rev. Lett. 133 (13), 134001.CrossRefGoogle ScholarPubMed
Yi, L., Toschi, F. & Sun, C. 2021 Global and local statistics in turbulent emulsions. J. Fluid Mech. 912, A13.CrossRefGoogle Scholar
Yi, L., Wang, C., Huisman, S.G. & Sun, C. 2023 Recent developments of turbulent emulsions in Taylor–Couette flow. Phil. Trans. R. Soc. A: Math. Phys. Engng Sci. 381 (2243), 20220129.CrossRefGoogle ScholarPubMed
Yi, L., Wang, C., van Vuren, T., Lohse, D., Risso, F., Toschi, F. & Sun, C. 2022 Physical mechanisms for droplet size and effective viscosity asymmetries in turbulent emulsions. J. Fluid Mech. 951, A39.CrossRefGoogle Scholar
Zhang, Y.-B., Fan, Y., Su, J., Xi, H.-D. & Sun, C. 2025 Global drag reduction and local flow statistics in Taylor–Couette turbulence with dilute polymer additives. J. Fluid Mech. 1002, A33.CrossRefGoogle Scholar