No CrossRef data available.
Published online by Cambridge University Press: 16 May 2025
Deformation occurs in a thin liquid film when it is subjected to a non-uniform electric field, which is referred to as the electrohydrodynamic patterning. Due to the development of a non-uniform electrical force along the surface, the film would evolve into microstructures/nanostructures. In this work, a linear and a nonlinear model are proposed to thoroughly investigate the steady state (i.e. equilibrium state) of the electrohydrodynamic deformation of thin liquid film. It is found that the deformation is closely dependent on the electric Bond number BoE. Interestingly, when BoE is larger than a critical value, the film would be deformed remarkably and get in contact with the top template. To model the ‘contact’ between the liquid film and the solid template, the disjoining pressure is incorporated into the numerical model. From the nonlinear numerical model, a hysteresis deformation is revealed, i.e. the film may have different equilibrium states depending on whether the voltage is increased or decreased. To analyse the stability of these multiple equilibrium states, the Lyapunov functional is employed to characterise the system’s free energy. According to the Lyapunov functional analysis, at most three equilibrium states can be formed. Among them, one is stable, another is metastable and the third one is unstable. Finally, the model is extended to study the three-dimensional deformation of the electrohydrodynamic patterning.