Hostname: page-component-54dcc4c588-5q6g5 Total loading time: 0 Render date: 2025-10-12T17:37:00.773Z Has data issue: false hasContentIssue false

Electrohydrodynamic deformation of liquid film underneath a topographical template

Published online by Cambridge University Press:  16 May 2025

Tingting Zhang
Affiliation:
College of Mechanical & Electrical Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, PR China
Fenhong Song
Affiliation:
School of Energy and Power Engineering, Northeast Electric Power University, Jilin, Jilin 132012, PR China
Ben Q. Li
Affiliation:
Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA
Feng Xu*
Affiliation:
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China
Qingzhen Yang*
Affiliation:
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China Research Institute of Xi’an Jiaotong University, Hangzhou, Zhejiang 311215, PR China
*
Corresponding authors: Qingzhen Yang, qzyang@mail.xjtu.edu.cn; Feng Xu, fengxu@mail.xjtu.edu.cn
Corresponding authors: Qingzhen Yang, qzyang@mail.xjtu.edu.cn; Feng Xu, fengxu@mail.xjtu.edu.cn

Abstract

Deformation occurs in a thin liquid film when it is subjected to a non-uniform electric field, which is referred to as the electrohydrodynamic patterning. Due to the development of a non-uniform electrical force along the surface, the film would evolve into microstructures/nanostructures. In this work, a linear and a nonlinear model are proposed to thoroughly investigate the steady state (i.e. equilibrium state) of the electrohydrodynamic deformation of thin liquid film. It is found that the deformation is closely dependent on the electric Bond number BoE. Interestingly, when BoE is larger than a critical value, the film would be deformed remarkably and get in contact with the top template. To model the ‘contact’ between the liquid film and the solid template, the disjoining pressure is incorporated into the numerical model. From the nonlinear numerical model, a hysteresis deformation is revealed, i.e. the film may have different equilibrium states depending on whether the voltage is increased or decreased. To analyse the stability of these multiple equilibrium states, the Lyapunov functional is employed to characterise the system’s free energy. According to the Lyapunov functional analysis, at most three equilibrium states can be formed. Among them, one is stable, another is metastable and the third one is unstable. Finally, the model is extended to study the three-dimensional deformation of the electrohydrodynamic patterning.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alizadeh, A., Hsu, W.L., Wang, M. & Daiguji, H. 2021 Electroosmotic flow: from microfluidics to nanofluidics. Electrophoresis 42 (7-8), 834868.CrossRefGoogle ScholarPubMed
Behjatian, A. & Esmaeeli, A. 2015 Equilibrium shape and hysteresis behavior of liquid jets in transverse electric fields. J. Electrostat. 75, 513.CrossRefGoogle Scholar
Blyth, M.G., Tseluiko, D., Lin, T-S. & Kalliadasis, S. 2018 Two-dimensional pulse dynamics and the formation of bound states on electrified falling films. J. Fluid Mech. 855, 210235.CrossRefGoogle Scholar
Cengel, Y.A. 2010 Fluid Mechanics Fundamentals and Applications. McGraw-Hill.Google Scholar
Chou, S.Y. & Zhuang, L. 1999 Lithographically induced self-assembly of periodic polymer micropillar arrays. J. Vac. Sci. Technol. B 17 (6), 31973202.CrossRefGoogle Scholar
Chou, S.Y., Zhuang, L. & Guo, L.J. 1999 Lithographically induced self-construction of polymer microstructures for resistless patterning. Appl. Phys. Lett. 75 (7), 10041006.CrossRefGoogle Scholar
De Ruiter, R., Semprebon, C., Van Gorcum, M., Duits, MHG., Brinkmann, M. & Mugele, F. 2015 Stability limits of capillary bridges: how contact angle hysteresis affects morphology transitions of liquid microstructures. Phys. Rev. Lett. 114 (23), 234501.CrossRefGoogle ScholarPubMed
Dietzel, M. & Troian, S.M. 2009 Formation of nanopillar arrays in ultrathin viscous films: the critical role of thermocapillary stresses. Phys. Rev. Lett. 103 (7), 074501.CrossRefGoogle ScholarPubMed
Dietzel, M. & Troian, S.M. 2010 Mechanism for spontaneous growth of nanopillar arrays in ultrathin films subject to a thermal gradient. J. Appl. Phys. 108 (7), 074308.CrossRefGoogle Scholar
Doedel, E.J. & Oldeman, B. 1998 Auto-07p: Continuation and Bifurcation Software. Concordia University Canada.Google Scholar
Gambhire, P. & Thaokar, R. 2014 Electrokinetic model for electric-field-induced interfacial instabilities. Phys. Rev. E 89 (3), 032409.CrossRefGoogle ScholarPubMed
Heier, J., Groenewold, J. & Steiner, U. 2009 Pattern formation in thin polymer films by spatially modulated electric fields. Soft Matter 5 (20), 39974005.CrossRefGoogle Scholar
Hu, H., Shao, J., Tian, H., Li, X. & Jiang, C. 2016 Mushroom-shaped micropillars for robust nonwetting surface by electrohydrodynamic structuring technique. Ieee T. Nanotechnol. 15 (2), 237242.CrossRefGoogle Scholar
Hu, H., Tian, H., Shao, J., Li, X., Wang, Y., Wang, Y., Tian, Y. & Lu, B. 2017 Discretely supported dry adhesive film inspired by biological bending behavior for enhanced performance on a rough surface. Acs Appl. Mater. Inter. 9 (8), 77527760.CrossRefGoogle ScholarPubMed
Hunt, G.W., Peletier, M.A. & Wadee, M.A. 2000 The maxwell stability criterion in pseudo-energy models of kink banding. J. Struct. Geol. 22 (5), 669681.CrossRefGoogle Scholar
Huo, Y. & Müller, I. 1993 Nonequilibrium thermodynamics of pseudoelasticity. Continuum Mech. Therm. 5 (3), 163204.CrossRefGoogle Scholar
Jackson, J.D. 1999 Classical Electrodynamics. John Wiley & Sons.Google Scholar
Kim, D. & Lu, W. 2006 Three-dimensional model of electrostatically induced pattern formation in thin polymer films. Phys. Rev. B 73 (3), 035206.CrossRefGoogle Scholar
Kundu, P.K. & Cohen, I.M. 2008 Fluid Mechanics. Elsevier Academic Press.Google Scholar
Li, J., Ha, N.S., Liu, T.L., Van Dam, R.M. & Kim, C.-J.C. 2019 Ionic-surfactant-mediated electro-dewetting for digital microfluidics. Nature 572 (7770), 507510.CrossRefGoogle ScholarPubMed
Li, X., Ding, Y., Shao, J., Tian, H. & Liu, H. 2012 Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in Microholes. Adv. Mater. 24 (23), OP165OP169.CrossRefGoogle ScholarPubMed
Liang, X.G., Zhang, W., Li, M.T., Xia, Q.F., Wu, W., Ge, H.X., Huang, X.Y. & Chou, S.Y. 2005 Electrostatic force-assisted nanoimprint lithography (EFAN). Nano Lett. 5 (3), 527530.CrossRefGoogle ScholarPubMed
Lin, Z., Kerle, T., Russell, T.P., Schäffer, E. & Steiner, U. 2002 Electric field induced dewetting at polymer/polymer interfaces. Macromolecules 35 (16), 62556262.CrossRefGoogle Scholar
Liu, Q., Ouchi, T., Jin, L., Hayward, R. & Suo, Z. 2019 Elastocapillary crease. Phys. Rev. Lett. 122 (9), 098003.CrossRefGoogle ScholarPubMed
Merkt, D., Pototsky, A., Bestehorn, M. & Thiele, U. 2005 Long-wave theory of bounded two-layer films with a free liquid-liquid interface: short-and long-time evolution. Phys. Fluids 17 (6), 064104.CrossRefGoogle Scholar
Mugele, F. & Baret, J-C. 2005 Electrowetting: from basics to applications. Journal of Physics: Condensed Matter 17 (28), R705R774.Google Scholar
Mukherjee, R. & Sharma, A. 2015 Instability, self-organization and pattern formation in thin soft films. Soft Matter 11 (45), 87178740.CrossRefGoogle ScholarPubMed
Nazaripoor, H., Flynn, M., Koch, C.R. & Sadrzadeh, M. 2018 Thermally induced interfacial instabilities and pattern formation in confined liquid nanofilms. Phys. Rev. E 98 (4), 043106.CrossRefGoogle Scholar
Nazaripoor, H., Koch, C.R. & Sadrzadeh, M. 2017 Enhanced electrically induced micropatterning of confined thin liquid films: thermocapillary role and its limitations. Ind. Eng. Chem. Res. 56 (38), 1067810688.CrossRefGoogle Scholar
Nazaripoor, H., Koch, C.R., Sadrzadeh, M. & Bhattacharjee, S. 2015 Electrohydrodynamic patterning of ultra-thin ionic liquid films. Soft Matter 11 (11), 21932202.CrossRefGoogle ScholarPubMed
Nazaripoor, H., Koch, C.R., Sadrzadeh, M. & Bhattacharjee, S. 2016 Thermo-electrohydrodynamic patterning in nanofilms. Langmuir 32 (23), 57765786.CrossRefGoogle ScholarPubMed
Oron, A., Davis, S.H. & Bankoff, S.G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931980.CrossRefGoogle Scholar
Pease, L.F. & Russel, W.B. 2002 Linear stability analysis of thin leaky dielectric films subjected to electric fields. J. Non-NEWTON. Fluid 102 (2), 233250.CrossRefGoogle Scholar
Pethig, R. 2010 Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4 (2), 022811.CrossRefGoogle ScholarPubMed
Ramkrishnan, A. & Kumar, S. 2014 Electrohydrodynamic deformation of thin liquid films near surfaces with topography. Phys. Fluids 26 (12), 122110.CrossRefGoogle Scholar
Roberts, S.A. & Kumar, S. 2009 AC electrohydrodynamic instabilities in thin liquid films. J. Fluid Mech. 631, 255279.CrossRefGoogle Scholar
Rohlfs, W., Cammiade, L.M., Rietz, M. & Scheid, B. 2021 On the effect of electrostatic surface forces on dielectric falling films. J. Fluid Mech. 906, A18.CrossRefGoogle Scholar
Sachkov, Y.L. 2008 Maxwell strata in the Euler elastic problem. J. Dyn. Control Syst. 14 (2), 169234.CrossRefGoogle Scholar
Schaffer, E., Thurn-Albrecht, T., Russell, T.P. & Steiner, U. 2000 Electrically induced structure formation and pattern transfer. Nature 403 (6772), 874877.CrossRefGoogle ScholarPubMed
Sherwood, J.D. 1988 Breakup of fluid droplets in electric and magnetic-fields. J. Fluid Mech. 188, 133146.CrossRefGoogle Scholar
Song, F., Liu, Y., Zhang, T., Fan, J. & Yang, Q. 2022 Marangoni flow of thin liquid film underneath a topographical plate. Case Studies in Thermal Engineering 35, 102094.CrossRefGoogle Scholar
Teletzke, G.F., Davis, H.T. & Scriven, L. 1988 Wetting hydrodynamics. Review of Physics Applied 23 (6), 9891007.CrossRefGoogle Scholar
Thiele, U., Brusch, L., Bestehorn, M. & Bär, M. 2003 Modelling thin-film dewetting on structured substrates and templates: bifurcation analysis and numerical simulations. The European Physical Journal E 11 (3), 255271.CrossRefGoogle ScholarPubMed
Thiele, U., Neuffer, K., Pomeau, Y. & Velarde, M.G. 2002 On the importance of nucleation solutions for the rupture of thin liquid films. Colloids and Surfaces A: Physicochemical and Engineering Aspects 206 (1–3), 135155.CrossRefGoogle Scholar
Thiele, U., Velarde, M.G., Neuffer, K. & Pomeau, Y. 2001 Film rupture in the diffuse interface model coupled to hydrodynamics. Phys. Rev. E 64 (3), 031602.CrossRefGoogle ScholarPubMed
Tian, H.M., Shao, J.Y., Ding, Y.C., Li, X. & Li, X.M. 2011 Numerical studies of electrically induced pattern formation by coupling liquid dielectrophoresis and two-phase flow. Electrophoresis 32 (17), 22452252.CrossRefGoogle ScholarPubMed
Tseluiko, D., Blyth, M.G. & Papageorgiou, D.T. 2013 Stability of film flow over inclined topography based on a long-wave nonlinear model. J. Fluid Mech. 729, 638671.CrossRefGoogle Scholar
Tseluiko, D., Blyth, M.G., Papageorgiou, D.T. & Vanden-Broeck, J.M. 2008a Effect of an electric field on film flow down a corrugated wall at zero reynolds number. Phys. Fluids 20 (4), 042103.CrossRefGoogle Scholar
Tseluiko, D., Blyth, M.G., Papageorgiou, D.T. & Vanden-Broeck, J.M. 2008b Electrified viscous thin film flow over topography. J. Fluid Mech. 597, 449475.CrossRefGoogle Scholar
Tseluiko, D. & Papageorgiou, D.T. 2006 Wave evolution on electrified falling films. J. Fluid Mech. 556, 361386.CrossRefGoogle Scholar
Tsori, Y. 2009 Colloquium: phase transitions in polymers and liquids in electric fields. Rev. Mod. Phys. 81 (4), 14711494.CrossRefGoogle Scholar
Verma, R., Sharma, A., Kargupta, K. & Bhaumik, J. 2005 Electric field induced instability and pattern formation in thin liquid films. Langmuir 21 (8), 37103721.CrossRefGoogle ScholarPubMed
Wheeler, A.R. 2008 Putting electrowetting to work. Science 322 (5901), 539540.CrossRefGoogle ScholarPubMed
Wu, L. & Chou, S.Y. 2003 Dynamic modeling and scaling of nanostructure formation in the lithographically induced self-assembly and self-construction. Appl. Phys. Lett. 82 (19), 32003202.CrossRefGoogle Scholar
Wu, N., Kavousanakis, M.E. & Russel, W.B. 2010 Coarsening in the electrohydrodynamic patterning of thin polymer films. Phys. Rev. E 81 (2), 026306.CrossRefGoogle ScholarPubMed
Wu, N., Pease, L.F. & Russel, W.B. 2005 Electric-field-induced patterns in thin polymer films: weakly nonlinear and fully nonlinear evolution. Langmuir 21 (26), 1229012302.CrossRefGoogle ScholarPubMed
Wu, N. & Russel, W.B. 2005 Dynamics of the formation of polymeric microstructures induced by electrohydrodynamic instability. Appl. Phys. Lett. 86 (24), 241912.CrossRefGoogle Scholar
Wu, N. & Russel, W.B. 2006 Electrohydrodynamic instability of dielectric bilayers: kinetics and thermodynamics. Ind. Eng. Chem. Res. 45 (16), 54555465.CrossRefGoogle Scholar
Wu, N. & Russel, W.B. 2009 Micro- and nano-patterns created via electrohydrodynamic instabilities. Nano Today 4 (2), 180192.CrossRefGoogle Scholar
Yang, Q., Li, B.Q. & Ding, Y. 2013 a 3D phase field modeling of electrohydrodynamic multiphase flows. Int. J. Multiphas. Flow 57, 19.CrossRefGoogle Scholar
Yang, Q., Li, B.Q. & Ding, Y. 2013 b Dynamic modelling of micro/nano-patterning transfer by an electric field. Rsc Adv. 3 (46), 2465824663.CrossRefGoogle Scholar
Yang, Q., Li, B.Q., Shao, J. & Ding, Y. 2014 A phase field numerical study of 3D bubble rising in viscous fluids under an electric field. Int. J. Heat Mass Tran. 78, 820829.CrossRefGoogle Scholar
Yeoh, H.K., Xu, Q. & Basaran, O.A. 2007 Equilibrium shapes and stability of a liquid film subjected to a nonuniform electric field. Phys. Fluids 19 (11), 114111.CrossRefGoogle Scholar