Hostname: page-component-cb9f654ff-5jtmz Total loading time: 0 Render date: 2025-09-03T08:55:27.389Z Has data issue: false hasContentIssue false

Dynamics of a liquid film flowing down a granular chain

Published online by Cambridge University Press:  04 August 2025

Kishor Kumar Sarva
Affiliation:
Interdisciplinary Center for Energy Research (ICER), Indian Institute of Science, Bangalore 560012, India
Tejas G. Murthy
Affiliation:
Department of Civil Engineering, Indian Institute of Science, Bangalore 560012, India
Gaurav Tomar*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
*
Corresponding author: Gaurav Tomar, gtom@iisc.ac.in

Abstract

A liquid film flowing down a fibre becomes unstable, leading to the formation of droplets that travel downstream. The droplet spacing and speed depend on the flow rate for a given nozzle and fibre radii. We show that fibre morphology further modifies the droplet spacing. In particular, we study the effect of the size of the beads in a granular chain on the evolution of the film thickness. We show that, when the size of the bead exceeds a critical value, the selection mechanism for instability modes is modified from regularly spaced droplets to coarsening by droplet merging. Droplet formation for flow over a single bead on the fibre is modified successively over subsequent beads in the downstream. Further, we show that if the perturbation in the flow produced by the bead is introduced as a velocity perturbation at the nozzle inlet, the formation of droplets on the fibre is qualitatively similar to that for the bead.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bar-Cohen, A., Arik, M. & Ohadi, M. 2006 Direct liquid cooling of high flux micro and nano electronic components. Proc. IEEE 94 (8), 15491570.10.1109/JPROC.2006.879791CrossRefGoogle Scholar
Bhushan, B. 2020 Handbook of Micro/Nano Tribology. CRC press.10.1201/9781420050493CrossRefGoogle Scholar
Bonart, H., Rajes, S., Jung, J. & Repke, J.-U. 2020 Stability of gravity-driven liquid films overflowing microstructures with sharp corners. Phys. Rev. Fluids 5 (9), 094001.10.1103/PhysRevFluids.5.094001CrossRefGoogle Scholar
Brackbill, J.U., Kothe, D.B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.10.1016/0021-9991(92)90240-YCrossRefGoogle Scholar
Breidenich, J.L., Wei, M.C., Clatterbaugh, G.V., Benkoski, J.J., Keng, P.Y. & Pyun, J. 2012 Controlling length and areal density of artificial cilia through the dipolar assembly of ferromagnetic nanoparticles. Soft Matt. 8 (19), 53345341.10.1039/c2sm25096aCrossRefGoogle Scholar
Chan, T.S., Lee, C.L., Pedersen, C., Dalnoki-Veress, K. & Carlson, A. 2021 Film coating by directional droplet spreading on fibers. Phys. Rev. Fluids 6 (1), 014004.10.1103/PhysRevFluids.6.014004CrossRefGoogle Scholar
Craster, R.V. & Matar, O.K. 2006 On viscous beads flowing down a vertical fibre. J. Fluid Mech. 553, 85105.10.1017/S0022112006008706CrossRefGoogle Scholar
Dávalos-Orozco, LA 2007 Nonlinear instability of a thin film flowing down a smoothly deformed surface. Phys. Fluids 19 (7), 174103.10.1063/1.2750384CrossRefGoogle Scholar
Dietze, G.F. 2019 Effect of wall corrugations on scalar transfer to a wavy falling liquid film. J. Fluid Mech. 859, 10981128.10.1017/jfm.2018.851CrossRefGoogle Scholar
Duprat, C., Ruyer-Quil, C. & Giorgiutti-Dauphiné, F. 2009 Spatial evolution of a film flowing down a fiber. Phys. Fluids 21 (4), 042109.10.1063/1.3119811CrossRefGoogle Scholar
Duprat, C., Ruyer-Quil, C., Kalliadasis, S. & Giorgiutti-Dauphiné, F. 2007 Absolute and convective instabilities of a viscous film flowing down a vertical fiber. Phys. Rev. Lett. 98 (24), 244502.10.1103/PhysRevLett.98.244502CrossRefGoogle Scholar
Frenkel, A.L. 1992 Nonlinear theory of strongly undulating thin films flowing down vertical cylinders. Europhys. Lett. 18 (7), 583588.10.1209/0295-5075/18/7/003CrossRefGoogle Scholar
Gabbard, C.T. & Bostwick, J.B. 2021 Asymmetric instability in thin-film flow down a fiber. Phys. Rev. Fluids 6 (3), 034005.10.1103/PhysRevFluids.6.034005CrossRefGoogle Scholar
Goren, S.L. 1962 The instability of an annular thread of fluid. J. Fluid Mech. 12 (2), 309319.10.1017/S002211206200021XCrossRefGoogle Scholar
Heining, C., Wierschem, A. & Aksel, N. 2007 Influence of the bottom undulation on surface waves in thin film flow. Proc. Appl. Maths Mech. 7, 41000334100034.10.1002/pamm.200700720CrossRefGoogle Scholar
Ji, H., Sadeghpour, A., Ju, Y.S. & Bertozzi, A.L. 2020 Modelling film flows down a fibre influenced by nozzle geometry. J. Fluid Mech. 901, R6.10.1017/jfm.2020.605CrossRefGoogle Scholar
Kalliadasis, S. & Chang, H.-C. 1994 Drop formation during coating of vertical fibres. J. Fluid Mech. 261, 135168.10.1017/S0022112094000297CrossRefGoogle Scholar
Kliakhandler, I.L., Davis, S.H. & Bankoff, S.G. 2001 Viscous beads on vertical fibre. J. Fluid Mech. 429, 381390.10.1017/S0022112000003268CrossRefGoogle Scholar
Li, W., Carvalho, M.S., Kumar, S. 2017 Viscous free-surface flows on rotating elliptical cylinders. Phys. Rev. Fluids 2 (9), 094005.10.1103/PhysRevFluids.2.094005CrossRefGoogle Scholar
Liu, R. & Ding, Z. 2021 Coating flows down a vertical fibre: towards the full Navier–Stokes problem. J. Fluid Mech. 914, A30.10.1017/jfm.2020.866CrossRefGoogle Scholar
Machado, L.P.S. & Sen, S. 2021 Granular chains with fixed side decoration as impact protector and signals filter. Phys. Rev. E 103 (4), 042904.10.1103/PhysRevE.103.042904CrossRefGoogle ScholarPubMed
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190 (2), 572600.10.1016/S0021-9991(03)00298-5CrossRefGoogle Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.10.1016/j.jcp.2009.04.042CrossRefGoogle Scholar
Quéré, D. 1999 Fluid coating on a fiber. Annu. Rev. Fluid Mech. 31 (1), 347384.10.1146/annurev.fluid.31.1.347CrossRefGoogle Scholar
Rivero, P.J., Urrutia, A., Goicoechea, J. & Arregui, F.J. 2015 Nanomaterials for functional textiles and fibers. Nanoscale Res. Lett. 10 (1), 122.10.1186/s11671-015-1195-6CrossRefGoogle ScholarPubMed
Roberts, A.J. & Li, Z. 2006 An accurate and comprehensive model of thin fluid flows with inertia on curved substrates. J. Fluid Mech. 553, 3373.10.1017/S0022112006008640CrossRefGoogle Scholar
Roy, R.V., Roberts, A.J. & Simpson, M.E. 2002 A lubrication model of coating flows over a curved substrate in space. J. Fluid Mech. 454, 235261.10.1017/S0022112001007133CrossRefGoogle Scholar
Ruyer-Quil, C. & Kalliadasis, S. 2012 Wavy regimes of film flow down a fiber. Phys. Rev. E 85 (4), 046302.10.1103/PhysRevE.85.046302CrossRefGoogle ScholarPubMed
Ruyer-Quil, C., Treveleyan, P., Giorgiutti-Dauphiné, F., Duprat, C. & Kalliadasis, S. 2008 Modelling film flows down a fibre. J. Fluid Mech. 603, 431462.10.1017/S0022112008001225CrossRefGoogle Scholar
Sadeghpour, A. 2020 Characteristics and applications of thin liquid films flowing down high-curvature surfaces. PhD thesis, University of California.Google Scholar
Shkadov, V.Y. & Sisoev, G.M. 2004 Waves induced by instability in falling films of finite thickness. Fluid Dyn. Res. 35 (5), 357389.10.1016/j.fluiddyn.2004.08.002CrossRefGoogle Scholar
Sisoev, G.M., Craster, R.V., Matar, O.K. & Gerasimov, S.V. 2006 Film flow down a fibre at moderate flow rates. Chem. Engng Sci. 61 (22), 72797298.10.1016/j.ces.2006.08.033CrossRefGoogle Scholar
Solorio, F.J. & Sen, M. 1987 Linear stability of a cylindrical falling film. J. Fluid Mech. 183, 365377.10.1017/S0022112087002672CrossRefGoogle Scholar
Su, M., Li, F., Chen, S., Huang, Z., Qin, M., Li, W., Zhang, X. & Song, Y. 2016 Nanoparticle based curve arrays for multirecognition flexible electronics. Adv. Mater. 28 (7), 13691374.10.1002/adma.201504759CrossRefGoogle ScholarPubMed
Tomar, G., Fuster, D., Zaleski, S. & Popinet, S. 2010 Multiscale simulations of primary atomization. Comput. Fluids 39 (10), 18641874.10.1016/j.compfluid.2010.06.018CrossRefGoogle Scholar
Trifonov, Y. 2017 Nonlinear waves on a liquid film falling down an inclined corrugated surface. Phys. Fluids 29 (5), 054104.10.1063/1.4984005CrossRefGoogle Scholar
Trifonov, Y.Y. 1992 Steady‐state traveling waves on the surface of a viscous liquid film falling down on vertical wires and tubes. AIChE J. 38 (6), 821834.10.1002/aic.690380604CrossRefGoogle Scholar
Trifonov, YY. 1998 Viscous liquid film flow over a vertical corrugated surface and waves formation on the film free surface. In Third Intl Conf. on Multiphase Flow. Lyon.10.1016/S0301-9322(98)00022-6CrossRefGoogle Scholar
Trifonov, Y.Y. 2007 Stability and nonlinear wavy regimes in downward film flows on a corrugated surface. J. Appl. Mech. Tech. Phys. 48 (1), 91100.10.1007/s10808-007-0013-zCrossRefGoogle Scholar
Wierschem, A. & Aksel, N. 2003 Instability of a liquid film flowing down an inclined wavy plane. Physica D: Nonlinear Phenom. 186 (3–4), 221237.10.1016/S0167-2789(03)00242-2CrossRefGoogle Scholar
Xie, Q., Liu, R., Wang, X. & Chen, X. 2021 Investigation of flow dynamics of thin viscous films down differently shaped fibers. Appl. Phys. Lett. 119 (20), 201601.10.1063/5.0069189CrossRefGoogle Scholar
Xu, K., Qin, L. & Heath, J.R. 2009 The crossover from two dimensions to one dimension in granular electronic materials. Nat. Nanotechnol. 4 (6), 368372.10.1038/nnano.2009.81CrossRefGoogle ScholarPubMed
Ya, S. 1967 Wave flow regimes of a thin layer of viscous fluid subject to gravity. Fluid Dyn. 2, 4351.Google Scholar