Hostname: page-component-6bb9c88b65-k72x6 Total loading time: 0 Render date: 2025-07-23T09:35:04.654Z Has data issue: false hasContentIssue false

Decay of plane shock waves in equilibrium flows

Published online by Cambridge University Press:  21 July 2025

Donner T. Schoeffler*
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
Joseph E. Shepherd
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
*
Corresponding author: Donner T. Schoeffler, dschoeff@caltech.edu

Abstract

A new model is presented for the decay of plane shock waves in equilibrium flows with an arbitrary equation of state. A fundamental challenge for the accurate prediction of shock propagation using analytical modelling is to account for the coupling between a shock’s motion and the post-shock flow. Our model accomplishes this by neglecting only higher-order perturbations to the second velocity gradient, $u_{xx}$, in the incident simple wave. The second velocity gradient is generally small and exactly zero for centred expansion waves in a perfect gas, so neglecting its effect on the shock motion provides an accurate closure criterion for a shock-change equation. This second-order shock-change equation is derived for a general equation of state. The model is tested by comparison with numerical simulations for three problems: decay by centred waves in a perfect gas, decay by centred waves in equilibrium air and decay by the simple wave generated from the constant deceleration of piston in a perfect gas. The model is shown to be exceptionally accurate for a wide range of conditions, including small $\gamma$ and large shock Mach numbers. For a Mach 15 shock in equilibrium air, model errors are less than 2 % in the first 60 % of the shock’s decay. The analytical results possess a simple formulation but are applicable to fluids with a general equation of state, enabling new insight into this fundamental problem in shock wave physics.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

van Albada, G.D., van Leer, B. & Roberts, W.W. 1997 A comparative study of computational methods in cosmic gas dynamics. Upwind and High-Resolution Schemes (ed. M.Y. Hussaini, B. van Leer & J. Van Rosendale), pp. 95103, Springer.10.1007/978-3-642-60543-7_6CrossRefGoogle Scholar
Ardavan-Rhad, H. 1970 The decay of a plane shock wave. J. Fluid Mech. 43 (4), 737751.10.1017/S0022112070002707CrossRefGoogle Scholar
Barenblatt, G.I. & Zel’dovich, Y.B. 1972 Self-similar solutions as intermediate asymptotics. Annu. Rev. Fluid Mech. 4 (1), 285312.10.1146/annurev.fl.04.010172.001441CrossRefGoogle Scholar
Best, J.P. 1991 A generalisation of the theory of geometrical shock dynamics. Shock Waves 1 (4), 251273.10.1007/BF01418882CrossRefGoogle Scholar
Brinkley, S.R. & Kirkwood, J.G. 1947 Theory of the propagation of shock waves. Phys. Rev. 71 (9), 606611.10.1103/PhysRev.71.606CrossRefGoogle Scholar
Burnside, R.R. & Mackie, A.G. 1965 A problem in shock wave decay. J. Aust. Math. Soc. 5 (2), 258272.10.1017/S1446788700026823CrossRefGoogle Scholar
Cassen, B. & Stanton, J. 1948 The decay of shock waves. J. Appl. Phys. 19 (9), 803807.10.1063/1.1698211CrossRefGoogle Scholar
Chandrasekhar, S. 1943 On the decay of plane shock waves, Tech. Rep. 423, Aberdeen Proving Ground.Google Scholar
Chen, P.J. & Gurtin, M.E. 1971 Growth and decay of one-dimensional shock waves in fluids with internal state variables. Phys. Fluids 14 (6), 10911094.10.1063/1.1693568CrossRefGoogle Scholar
Chester, W. 1954 CXLV. The quasi-cylindrical shock tube. Lond. Edinburgh Dublin Phil. Mag. J. Sci. 45 (371), 12931301.10.1080/14786441208561138CrossRefGoogle Scholar
Chisnell, R.F. 1957 The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. J. Fluid Mech. 2 (3), 286298.10.1017/S0022112057000130CrossRefGoogle Scholar
Cottet, F. & Romain, J.P. 1982 Formation and decay of laser-generated shock waves. Phys. Rev. A 25(1), 576579.10.1103/PhysRevA.25.576CrossRefGoogle Scholar
Eckett, C.A., Quirk, J.J. & Shepherd, J.E. 2000 The role of unsteadiness in direct initiation of gaseous detonations. J. Fluid Mech. 421, 147183.10.1017/S0022112000001555CrossRefGoogle Scholar
Eilers, P.H.C. 2003 A perfect smoother. Anal. Chem. 75 (14), 36313636.10.1021/ac034173tCrossRefGoogle ScholarPubMed
Fickett, W. & Davis, W.C. 1979 Detonation. University of California Press.Google Scholar
Fowles, G.R. 1960 Attenuation of the shock wave produced in a solid by a flying plate. J. Appl. Phys. 31 (4), 655661.10.1063/1.1735661CrossRefGoogle Scholar
Friedlander, F.D. 1958 Sound Pulses. Cambridge University Press.Google Scholar
Friedrichs, K.O. 1948 Formation and decay of shock waves. Commun. Pure Appl. Maths 1 (3), 211245.10.1002/cpa.3160010301CrossRefGoogle Scholar
Goodwin, D.G., Moffat, H.K. & Speth, R.L. 2021 Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Available at: https://www.cantera.org.Google Scholar
Greenshields, C. 2021 OpenFOAM v9 User Guide. The OpenFOAM Foundation.Google Scholar
Henderson, S.J. & Menart, J.A. 2008 Equilibrium properties of high-temperature air for a number of pressures. J. Thermophys. Heat Transfer 22 (4), 718726.10.2514/1.36141CrossRefGoogle Scholar
Henshaw, W.D., Smyth, N.F. & Schwendeman, D.W. 1986 Numerical shock propagation using geometrical shock dynamics. J. Fluid Mech. 171, 519545.10.1017/S0022112086001568CrossRefGoogle Scholar
Heylmun, J., Vonk, P. & Brewer, T. 2021 BlastFoam version 5.0 User guide. Available at: https://github.com/synthetik-technologies/blastfoam.Google Scholar
Jackson, S.I. & Short, M. 2013 The influence of the cellular instability on lead shock evolution in weakly unstable detonation. Combust. Flame 160 (10), 22602274.10.1016/j.combustflame.2013.04.028CrossRefGoogle Scholar
Jiang, Z.L., Zhao, W., Wang, C. & Takayama, K. 2002 Forward-running detonation drivers for high-enthalpy shock tunnels. AIAA J. 40 (10), 20092016.10.2514/2.1533CrossRefGoogle Scholar
Kao, S.T., Ziegler, J.L., Bitter, N.P., Schmidt, B.E., Lawson, J. & Shepherd, J.E. 2020 SDToolbox: numerical tools for shock and detonation wave modeling. GALCIT Report FM2018.001, California Institute of Technology.Google Scholar
Korobeinikov, V.P. 1991 Problems of Point-Blast Theory. American Institute of Physics.Google Scholar
Kurganov, A., Noelle, S. & Petrova, G. 2001 Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23 (3), 707740.10.1137/S1064827500373413CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1987 Course of Theoretical Physics-Vol. 6, Fluid Mechanics. 2nd edn. Pergamon Press.Google Scholar
Lee, J.H.S. 2016 The Gas Dynamics of Explosions. Cambridge University Press.10.1017/CBO9781316226926CrossRefGoogle Scholar
van Leer, B. 1974 Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14 (4), 361370.10.1016/0021-9991(74)90019-9CrossRefGoogle Scholar
McBride, B.J., Zehe, M.J. & Gordon, S. 2002 NASA Glenn coefficients for calculating thermodynamic properties of individual species, Technical Memorandum NASA/TP-2002-211556, NASA Glenn Research Center.Google Scholar
Oshima, K., Sugaya, K., Yamamoto, M. & Totoki, T. 1965 Diffraction of a plane shock wave around a corner, Tech. Rep. 393, ISAS.Google Scholar
Peace, J.T. & Lu, F.K. 2018 On the propagation of decaying planar shock and blast waves through non-uniform channels. Shock Waves 28 (6), 12231237.10.1007/s00193-018-0818-0CrossRefGoogle Scholar
Pert, G.J. 1980 Self-similar flows with uniform velocity gradient and their use in modelling the free expansion of polytropic gases. J. Fluid Mech. 100 (2), 257277.10.1017/S0022112080001140CrossRefGoogle Scholar
Radulescu, M.I. 2020 On the shock change equations. Phys. Fluids 32 (5), 056106.10.1063/1.5140216CrossRefGoogle Scholar
Ridoux, J., Lardjane, N., Monasse, L. & Coulouvrat, F. 2019 Beyond the limitation of geometrical shock dynamics for diffraction over wedges. Shock Waves 29 (6), 833855.10.1007/s00193-018-00885-wCrossRefGoogle Scholar
Rośaciszewski, J. 1960 Calculations of the motion of non-uniform shock waves. J. Fluid Mech. 8 (3), 337367.10.1017/S0022112060000669CrossRefGoogle Scholar
Sachdev, P.L. 2004 Shock Waves & Explosions. 1st edn. Chapman and Hall/CRC.Google Scholar
Schoeffler, D.T. & Shepherd, J.E. 2023 a Analysis of shock wave acceleration from normal detonation reflection. Shock Waves 33 (3), 205222.10.1007/s00193-023-01126-5CrossRefGoogle Scholar
Schoeffler, D.T. & Shepherd, J.E. 2023 b Decay of shock waves in detonation-driven shock tubes. In 34th International Symposium on Shock Waves. vol. 2. Springer Singapore.Google Scholar
Sharma, V.D. & Radha, C. 1994 On one-dimensional planar and nonplanar shock waves in a relaxing gas. Phys. Fluids 6 (6), 21772190.10.1063/1.868220CrossRefGoogle Scholar
Sharma, V.D., Ram, R. & Sachdev, P.L. 1987 Uniformly valid analytical solution to the problem of a decaying shock wave. J. Fluid Mech. 185, 153170.10.1017/S0022112087003124CrossRefGoogle Scholar
Singh, M. & Arora, R. 2021 Propagation of one-dimensional planar and nonplanar shock waves in nonideal radiating gas. Phys. Fluids 33 (4), 046106.10.1063/5.0048548CrossRefGoogle Scholar
Skews, B.W. 1967 The shape of a diffracting shock wave. J. Fluid Mech. 29 (2), 297304.10.1017/S0022112067000825CrossRefGoogle Scholar
Taylor, G.I. 1939 The propagation and decay of blast waves. In The Scientific Papers of Sir Geoffrey Ingram Taylor (ed. G.K. Batchelor), pp. 221. Cambridge University Press.Google Scholar
Thompson, P.A. 1971 A fundamental derivative in gasdynamics. Phys. Fluids 14 (9), 18431849.10.1063/1.1693693CrossRefGoogle Scholar
Thompson, P.A. 1972 Compressible Fluid Dynamics. McGraw-Hill.10.1115/1.3422684CrossRefGoogle Scholar
Vincenti, V.G. & Kruger, C.H. 1965 Introduction to Physical Gas Dynamics. Wiley.Google Scholar
Whitham, G.B. 1958 On the propagation of shock waves through regions of non-uniform area or flow. J. Fluid Mech. 4 (4), 337360.10.1017/S0022112058000495CrossRefGoogle Scholar
Whitham, G.B. 1999 Linear and Nonlinear Waves. John Wiley & Sons, Ltd.10.1002/9781118032954CrossRefGoogle Scholar
Woodward, P. & Colella, P. 1984 The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54 (1), 115173.10.1016/0021-9991(84)90142-6CrossRefGoogle Scholar
Wright, T.W. 1976 An intrinsic description of unsteady shock waves. Q. J. Mech. Appl. Maths. 29 (3), 311324.10.1093/qjmam/29.3.311CrossRefGoogle Scholar
Yousaf, M. 1974 The effect of overtaking disturbances on the motion of converging shock waves. J. Fluid Mech. 66 (3), 577591.10.1017/S0022112074000371CrossRefGoogle Scholar
Yousaf, M. 1982 Effect of overtaking disturbances on the motion of a shock wave due to an intense explosion. Phys. Fluids 25 (1), 4547.10.1063/1.863627CrossRefGoogle Scholar
Zel’dovich, Y. & Raizer, Y.P. 1967 Physics of Shock Waves and High Temperature Hydrodynamic Phenomen. Academic Press.Google Scholar