Hostname: page-component-6bb9c88b65-9rk55 Total loading time: 0 Render date: 2025-07-25T11:10:28.390Z Has data issue: false hasContentIssue false

Control of hypersonic boundary-layer transition by suppressing fundamental resonance using surface heating

Published online by Cambridge University Press:  21 July 2025

Xiaoyang Ji
Affiliation:
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
Ming Dong*
Affiliation:
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
Lei Zhao*
Affiliation:
Department of Mechanics, Tianjin University, Tianjin 300072, PR China National Key Laboratory of Vehicle Power System, Tianjin 300350, PR China
*
Corresponding authors: Ming Dong, dongming@imech.ac.cn; Lei Zhao, lei_zhao@tju.edu.cn
Corresponding authors: Ming Dong, dongming@imech.ac.cn; Lei Zhao, lei_zhao@tju.edu.cn

Abstract

This paper focuses on the concept of delaying laminar–turbulent transition in hypersonic boundary layers by stabilising fundamental resonance (FR), a key nonlinear mechanism in which finite-amplitude Mack modes support the rapid growth of oblique perturbations. As a pioneering demonstration of this control strategy, we introduce surface heating applied exclusively during the nonlinear phase. Unlike traditional control methods that target the linear phase, the suppressive effect of surface heating on secondary instability modes during FR is evident across various Reynolds numbers, wall temperatures and fundamental frequencies, as confirmed by direct numerical simulations (DNS) and secondary instability analyses (SIA). To gain deeper insights into this control concept, an asymptotic analysis is conducted, revealing an almost linear relationship between the suppression effect and the heating intensity. The asymptotic predictions align overall with the DNS and SIA calculations. The asymptotic theory reveals that the suppression effect of FR is primarily influenced by modifications to the fundamental-mode profile, while mean-flow distortion has a comparatively modest yet opposing impact on this process. This research presents a promising approach to controlling transition considering the nonlinear evolution of boundary-layer perturbations, demonstrating advantages over conventional methods that are sensitive to frequency variations.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Balakumar, P. & Malik, M.R. 1992 Discrete modes and continuous spectra in supersonic boundary layers. J. Fluid Mech. 239, 631656.10.1017/S0022112092004555CrossRefGoogle Scholar
Bertolotti, F.P., Herbert, T. & Spalart, P.R. 1992 Linear and nonlinear stability of the Blasius boundary layer. J. Fluid Mech. 242, 441474.10.1017/S0022112092002453CrossRefGoogle Scholar
Bountin, D., Chimitov, T., Maslov, A., Novikov, A., Egorov, I., Fedorov, A. & Utyuzhnikov, S. 2013 Stabilization of a hypersonic boundary layer using a wavy surface. AIAA J. 51 (5), 12031210.10.2514/1.J052044CrossRefGoogle Scholar
Chang, C. & Malik, M.R. 1994 Oblique-mode breakdown and secondary instability in supersonic boundary layers. J. Fluid Mech. 273, 323360.10.1017/S0022112094001965CrossRefGoogle Scholar
Chen, X., Zhu, Y. & Lee, C. 2017 Interactions between second mode and low-frequency waves in a hypersonic boundary layer. J. Fluid Mech. 820, 693735.10.1017/jfm.2017.233CrossRefGoogle Scholar
Cowley, S. & Hall, P. 1990 On the instability of hypersonic flow past a wedge. J. Fluid Mech. 214, 1742.10.1017/S0022112090000027CrossRefGoogle Scholar
Dong, M., Liu, Y. & Wu, X. 2020 Receptivity of inviscid modes in supersonic boundary layers due to scattering of free-stream sound by localised wall roughness. J. Fluid Mech. 896, A23.10.1017/jfm.2020.358CrossRefGoogle Scholar
Dong, M. & Zhao, L. 2021 An asymptotic theory of the roughness impact on inviscid Mack modes in supersonic/hypersonic boundary layers. J. Fluid Mech. 913, A22.10.1017/jfm.2020.1146CrossRefGoogle Scholar
Egorov, I.V., Novikov, A.V. & Fedorov, A.V. 2010 Direct numerical simulation of supersonic boundary layer stabilization using grooved wavy surface. AIAA Paper 2010-1245.10.2514/6.2010-1245CrossRefGoogle Scholar
El-Hady, N.M. 1992 Secondary instability of high-speed flows and the influence of wall cooling and suction. Phys. Fluids 4 (4), 727743.10.1063/1.858291CrossRefGoogle Scholar
Fedorov, A.V. 2003 Receptivity of a high-speed boundary layer to acoustic disturbances. J. Fluid Mech. 491, 101129.10.1017/S0022112003005263CrossRefGoogle Scholar
Fedorov, A. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43 (1), 7995.10.1146/annurev-fluid-122109-160750CrossRefGoogle Scholar
Fedorov, A., Kozlov, V., Shiplyuk, A., Maslov, A. & Malmuth, N. 2006 Stability of hypersonic boundary layer on porous wall with regular microstructure. AIAA J. 44 (8), 18661871.10.2514/1.21013CrossRefGoogle Scholar
Fedorov, A.V., Ryzhov, A.A., Soudakov, V.G. & Utyuzhnikov, S.V. 2014 Numerical simulation of the effect of local volume energy supply on high-speed boundary layer stability. Comput. Fluids 100, 130137.10.1016/j.compfluid.2014.04.026CrossRefGoogle Scholar
Fong, K., Wang, X., Huang, Y., Zhong, X., McKiernan, G., Fisher, R. & Schneider, S. 2015 Second mode suppression in hypersonic boundary layer by roughness: design and experiments. AIAA J. 53 (10), 31383144.10.2514/1.J054100CrossRefGoogle Scholar
Fong, K.D., Wang, X. & Zhong, X. 2014 Numerical simulation of roughness effect on the stability of a hypersonic boundary layer. Comput. Fluids 96, 350367.10.1016/j.compfluid.2014.01.009CrossRefGoogle Scholar
Fujii, K. 2006 Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition. J. Spacecr. Rockets 43 (4), 731738.10.2514/1.17860CrossRefGoogle Scholar
Gaponov, S.A. 2014 Linear instability of the supersonic boundary layer on a compliant surface. J. Appl. Math. Phys. 02 (06), 253263.10.4236/jamp.2014.26030CrossRefGoogle Scholar
Hader, C. & Fasel, H.F. 2017 Fundamental resonance breakdown for a flared cone at Mach 6. AIAA Paper 2016-0765.10.2514/6.2017-0765CrossRefGoogle Scholar
Hader, C. & Fasel, H.F. 2019 Direct numerical simulations of hypersonic boundary-layer transition for a flared cone: fundamental breakdown. J. Fluid Mech. 869, 341384.10.1017/jfm.2019.202CrossRefGoogle Scholar
Hader, C. & Fasel, H.F. 2021 Flow control using steady blowing and suction strips in a Mach 6 boundary layer on a flared cone. AIAA Paper 2021-1206.10.2514/6.2021-1206CrossRefGoogle Scholar
Hader, C. & Fasel, H.F. 2024 Transition delay in a Mach 6 boundary layer using steady blowing and suction strips. J. Fluid Mech. 991, R3.10.1017/jfm.2024.468CrossRefGoogle Scholar
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20 (1), 487526.10.1146/annurev.fl.20.010188.002415CrossRefGoogle Scholar
Holloway, P.F. & Sterrett, J.R. 1964 Effect of controlled surface roughness on boundary-layer transition and heat transfer at Mach numbers of 4.8 and 6.0. NASA Tech. Rep. TN-D-2054.10.2514/3.1975CrossRefGoogle Scholar
Ji, X., Dong, M. & Zhao, L. 2023 Impact of compliant coating on Mack-mode evolution in hypersonic boundary layers. J. Fluid Mech. 974, A1.10.1017/jfm.2023.731CrossRefGoogle Scholar
Kachanov, Y.S. 1994 Physical mechanisms of laminar-boundary-layer transition. Annu. Rev. Fluid Mech. 26 (1), 411482.10.1146/annurev.fl.26.010194.002211CrossRefGoogle Scholar
Li, F., Choudhari, M., Chang, C. & White, J. 2012 Secondary instability of second mode disturbances in hypersonic boundary layers. NASA Tech. Rep. NF1676L-13407.Google Scholar
Liu, Y., Dong, M. & Wu, X. 2020 Generation of first Mack modes in supersonic boundary layers by slow acoustic waves interacting with streamwise isolated wall roughness. J. Fluid Mech. 888, A10.10.1017/jfm.2020.38CrossRefGoogle Scholar
Liu, Y., Yang, Q., Tu, G., Li, X., Guo, Q. & Wan, B. 2023 Hypersonic boundary-layer instability suppression by transverse microgrooves with machining flaw. AIAA J. 61 (3), 10211031.10.2514/1.J061747CrossRefGoogle Scholar
Mack, L.M. 1975 Linear stability theory and the problem of supersonic boundary- layer transition. AIAA J. 13 (3), 278289.10.2514/3.49693CrossRefGoogle Scholar
Mack, L.M. 1984 Boundary-layer linear stability theory. AGARD Rep. 709.Google Scholar
Masad, J.A. & Nayfeh, A.H. 1992 Laminar flow control of subsonic boundary layers by suction and heat-transfer strips. Phys. Fluids 4 (6), 12591272.10.1063/1.858244CrossRefGoogle Scholar
Maslov, A.A., Shiplyuk, A.N., Sidorenko, A.A. & Arnal, D. 2001 Leading-edge receptivity of a hypersonic boundary layer on a flat plate. J. Fluid Mech. 426, 7394.10.1017/S0022112000002147CrossRefGoogle Scholar
Maslov, A., Shiplyuk, A., Sidorenko, A., Polivanov, P., Fedorov, A., Kozlov, V. & Malmuth, N. 2006 Hypersonic laminar flow control using a porous coating of random microstructure. AIAA Paper 1112.10.2514/6.2006-1112CrossRefGoogle Scholar
Miller, S.A., Mamrol, D., Redmond, J.J., Jantze, K., Scalo, C. & Jewell, J.S. 2022 High-speed boundary layer instability on a flat plate at angle of attack with porous walls. AIAA Paper 0303.10.2514/6.2022-0303CrossRefGoogle Scholar
Morkovin, M.V. 1968 Critical evaluation of transition from laminar to turbulent shear layers with emphasis on hypersonically traveling bodies. AFFDL Tech. Rep. 68–149.Google Scholar
Oz, F., Goebel, T.E., Jewell, J.S. & Kara, K. 2023 Local wall cooling effects on hypersonic boundary-layer stability. J. Spacecr. Rockets 60 (2), 412426.10.2514/1.A35404CrossRefGoogle Scholar
Oz, F. & Kara, K. 2024 Controlling hypersonic boundary layer transition with localized cooling and metasurface treatments. Sci. Rep. 14 (1), 15928.10.1038/s41598-024-66867-4CrossRefGoogle ScholarPubMed
Park, J., Rajendran, P.T., Kim, M., Lim, J., Jee, S. & Park, D. 2023 Effect of local thermal strips on hypersonic boundary-layer instability. Comput. Fluids 257, 105868.10.1016/j.compfluid.2023.105868CrossRefGoogle Scholar
Poulain, A., Content, C., Rigas, G., Garnier, E. & Sipp, D. 2024 Adjoint-based linear sensitivity of a supersonic boundary layer to steady wall blowing–suction/heating–cooling. J. Fluid Mech. 978, A16.10.1017/jfm.2023.993CrossRefGoogle Scholar
Reed, H.L. & Nayfeh, A.H. 1986 Numerical-perturbation technique for stability of flat-plate boundary layers with suction. AIAA J. 24 (2), 208214.10.2514/3.9247CrossRefGoogle Scholar
Sandham, N.D. & Lüdeke, H. 2009 Numerical study of Mach 6 boundary-layer stabilization by means of a porous surface. AIAA J. 47 (9), 22432252.10.2514/1.43388CrossRefGoogle Scholar
Si, W., Huang, G., Zhu, Y., Chen, S. & Lee, C. 2019 Hypersonic aerodynamic heating over a flared cone with wavy wall. Phys. Fluids 31 (5), 051702.10.1063/1.5098543CrossRefGoogle Scholar
Sivasubramanian, J. & Fasel, H.F. 2014 Numerical investigation of the development of three-dimensional wavepackets in a sharp cone boundary layer at Mach 6. J. Fluid Mech. 756, 600649.10.1017/jfm.2014.434CrossRefGoogle Scholar
Smith, F.T. 1989 On the first-mode instability in subsonic, supersonic or hypersonic boundary layers. J. Fluid Mech. 198, 127153.10.1017/S0022112089000078CrossRefGoogle Scholar
Smith, F.T. & Brown, S.N. 1990 The inviscid instability of a Blasius boundary layer at large values of the Mach number. J. Fluid Mech. 219, 499518.10.1017/S0022112090003044CrossRefGoogle Scholar
Song, Q. & Zhao, L. 2022 Scattering of Mack modes by solid-porous junctions in hypersonic boundary layers. Phys. Fluids 34 (8), 84104.10.1063/5.0106314CrossRefGoogle Scholar
Song, Q., Zhao, L. & Dong, M. 2023 Effect of porous coatings on the nonlinear evolution of Mack modes in hypersonic boundary layers. Phys. Fluids 35 (5), 054115.Google Scholar
Song, R., Dong, M. & Zhao, L. 2024 Principle of fundamental resonance in hypersonic boundary layers: an asymptotic viewpoint. J. Fluid Mech. 978, A30.10.1017/jfm.2023.1043CrossRefGoogle Scholar
Sousa, V.C.B., Patel, D., Chapelier, J.-B., Wartemann, V., Wagner, A. & Scalo, C. 2019 Numerical investigation of second-mode attenuation over carbon/carbon porous surfaces. J. Spacecr. Rockets 56 (2), 319332.10.2514/1.A34294CrossRefGoogle Scholar
Unnikrishnan, S. & Gaitonde, D.V. 2020 Linear, nonlinear and transitional regimes of second-mode instability. J. Fluid Mech. 905, A25.10.1017/jfm.2020.781CrossRefGoogle Scholar
Wang, X. & Lallande, D. 2020 Hypersonic boundary-layer stabilization using steady blowing and suction: effect of forcing location. AIAA Paper 2059.10.2514/6.2020-2059CrossRefGoogle Scholar
White, F.M. 2006 Viscous Fluid Flow, 3rd edn. McGraw-Hill.Google Scholar
Xu, J. & Liu, J. 2022 Wall-cooling effects on secondary instabilities of Mack mode disturbances at Mach 6. Phys. Fluids 34 (4), 044105.10.1063/5.0089119CrossRefGoogle Scholar
Xu, X., Yi, S., Quan, P., Lu, X. & Han, J. 2022 Delaying hypersonic boundary layer transition using forward-facing step arrays: an experimental work. Phys. Fluids 34 (6), 65128.10.1063/5.0094755CrossRefGoogle Scholar
Zhao, L. & Dong, M. 2020 Effect of suction on laminar-flow control in subsonic boundary layers with forward-/backward-facing steps. Phys. Fluids 32 (5), 054108.10.1063/5.0007624CrossRefGoogle Scholar
Zhao, L. & Dong, M. 2022 Effect of surface temperature strips on the evolution of supersonic and hypersonic Mack modes: asymptotic theory and numerical results. Phys. Rev. Fluids 7 (5), 053901.10.1103/PhysRevFluids.7.053901CrossRefGoogle Scholar
Zhao, L., Dong, M. & Yang, Y. 2019 Harmonic linearized Navier–Stokes equation on describing the effect of surface roughness on hypersonic boundary-layer transition. Phys. Fluids 31 (3), 034108.10.1063/1.5086912CrossRefGoogle Scholar
Zhao, L., He, J. & Dong, M. 2023 Asymptotic theory of Mack-mode receptivity in hypersonic boundary layers due to interaction of a heating/cooling source and a freestream sound wave. J. Fluid Mech. 963, A34.10.1017/jfm.2023.272CrossRefGoogle Scholar
Zhao, L., Zhang, C., Liu, J. & Luo, J. 2016 Improved algorithm for solving nonlinear parabolized stability equations. Chin. Phys. B 25 (8), 84701.10.1088/1674-1056/25/8/084701CrossRefGoogle Scholar
Zhao, R., Dong, Y., Zhang, X., Wen, C., Long, T. & Yuan, W. 2021 Control of reflected waves with acoustic metasurfaces for hypersonic boundary-layer stabilization. AIAA J. 59 (6), 18931898.10.2514/1.J060282CrossRefGoogle Scholar
Zhao, R., Wen, C.Y., Tian, X.D., Long, T.H. & Yuan, W. 2018 Numerical simulation of local wall heating and cooling effect on the stability of a hypersonic boundary layer. Intl Commun. Heat Mass Transfer 121, 986998.10.1016/j.ijheatmasstransfer.2018.01.054CrossRefGoogle Scholar
Zhao, R., Wen, C., Zhou, Y., Tu, G. & Lei, J. 2022 Review of acoustic metasurfaces for hypersonic boundary layer stabilization. Prog. Aerosp. Sci. 130, 100808.10.1016/j.paerosci.2022.100808CrossRefGoogle Scholar
Zhong, X. & Wang, X. 2012 Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers. Annu. Rev. Fluid Mech. 44 (1), 527561.10.1146/annurev-fluid-120710-101208CrossRefGoogle Scholar
Zhu, W., Chen, X., Zhu, Y. & Lee, C. 2020 a Nonlinear interactions in the hypersonic boundary layer on the permeable wall. Phys. Fluids 32 (10), 104110.10.1063/5.0028698CrossRefGoogle Scholar
Zhu, W., Gu, D., Si, W., Zhang, M., Chen, S., Smith, C.R., Zhu, Y. & Lee, C. 2022 Instability evolution in the hypersonic boundary layer over a wavy wall. J. Fluid Mech. 943, A16.10.1017/jfm.2022.437CrossRefGoogle Scholar
Zhu, W., Shi, M., Zhu, Y. & Lee, C. 2020 b Experimental study of hypersonic boundary layer transition on a permeable wall of a flared cone. Phys. Fluids 32 (1), 11701.10.1063/1.5139546CrossRefGoogle Scholar
Zhu, Y., Chen, X., Wu, J., Chen, S., Lee, C. & Gad-el Hak, M. 2018 Aerodynamic heating in transitional hypersonic boundary layers: role of second-mode instability. Phys. Fluids 30 (1), 011701.10.1063/1.5005529CrossRefGoogle Scholar
Zhuang, G., Wan, Z., Liu, N., Sun, D. & Lu, X. 2024 Instability and transition control by steady local blowing/suction in a hypersonic boundary layer. J. Fluid Mech. 990, A17.10.1017/jfm.2024.539CrossRefGoogle Scholar
Zhuang, G., Wan, Z., Ye, C., Luo, Z., Liu, N., Sun, D. & Lu, X. 2023 Active transition control by synthetic jets in a hypersonic boundary layer. Phys. Fluids 35 (3), 34112.10.1063/5.0141091CrossRefGoogle Scholar