Hostname: page-component-54dcc4c588-m259h Total loading time: 0 Render date: 2025-10-05T11:33:30.892Z Has data issue: false hasContentIssue false

The contribution of dilatational motion to energy flux in homogeneous compressible turbulence

Published online by Cambridge University Press:  28 August 2025

Chensheng Luo
Affiliation:
School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi’an 710072, PR China Research Institute of Aero-Engine, Beihang University, Beijing 100191, PR China Laboratory of Complex System, Ecole Centrale de Pékin/School of General Engineering, Beihang University, Beijing 100191, PR China
Le Fang
Affiliation:
Research Institute of Aero-Engine, Beihang University, Beijing 100191, PR China Laboratory of Complex System, Ecole Centrale de Pékin/School of General Engineering, Beihang University, Beijing 100191, PR China
Jian Fang
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
Haitao Xu
Affiliation:
Center for Combustion Energy and School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
Alain Pumir
Affiliation:
Laboratoire de Physique, Ecole Normale Supérieure de Lyon, CNRS Université de Lyon, Lyon F-69007, France
Ping-Fan Yang*
Affiliation:
School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi’an 710072, PR China Center for Combustion Energy and School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China National Key Laboratory of Aircraft Configuration Design, Xi’an 710072, PR China
*
Corresponding author: Ping-Fan Yang, yangpingfan@nwpu.edu.cn

Abstract

We analyse the energy flux in compressible turbulence by generalizing the exact decomposition recently proposed by Johnson (2020 Phys. Rev. Lett. 124, 104501) to study incompressible turbulent flows. This allows us to characterize the effect of dilatational motion on the interscale energy transfer in three-dimensional compressible turbulence. Our analysis reveals that the contribution of dilatational motion to energy transfer is due to three different physical mechanisms: the interaction between dilatation and strain; between dilatation and vorticity; and the self-interaction of dilatational motion across scales. By analysing numerical simulations of freely decaying and forced turbulence, we validate our theoretical derivations and provide a quantitative description of the role of solenoidal and dilatational motions in energy transfer. In particular, we determine the scaling dependence of the dilatational contributions on the turbulent Mach number. Moreover, our findings provide criteria for tuning the parameters in commonly used Smagorinsky and Yoshizawa models for large-eddy simulations of compressible turbulence.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aluie, H. 2011 Compressible turbulence : the cascade and its locality. Phys. Rev. Lett. 106, 174502.10.1103/PhysRevLett.106.174502CrossRefGoogle ScholarPubMed
Aluie, H. 2013 Scale decomposition in compressible turbulence. Physica D: Nonlinear Phenom. 247, 5465.10.1016/j.physd.2012.12.009CrossRefGoogle Scholar
Aluie, H., Li, S. & Li, H. 2012 Conservative cascade of kinetic energy in compressible turbulence. Astrophys. J. Lett. 751, L29.10.1088/2041-8205/751/2/L29CrossRefGoogle Scholar
Ballouz, J.G. & Ouellette, N.T. 2018 Tensor geometry in the turbulent cascade. J. Fluid Mech. 835, 10481064.10.1017/jfm.2017.802CrossRefGoogle Scholar
Ballouz, J.G. & Ouellette, N.T. 2020 Geometric constraints on energy transfer in the turbulent cascade. Phys. Rev. Fluids 5, 034603.10.1103/PhysRevFluids.5.034603CrossRefGoogle Scholar
Banerjee, S. & Galtier, S. 2014 A Kolmogorov-like exact relation for compressible polytropic turbulence. J. Fluid Mech. 742, 230242.10.1017/jfm.2013.657CrossRefGoogle Scholar
Bataille, F. & Zhou, Y. 1999 Nature of the energy transfer process in compressible turbulence. Phys. Rev. E 59, 54175426.10.1103/PhysRevE.59.5417CrossRefGoogle ScholarPubMed
Betchov, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1, 497504.10.1017/S0022112056000317CrossRefGoogle Scholar
Billig, F.S. 1988 Combustion processes in supersonic flow. J. Propul. Power 4, 209216.10.2514/3.23050CrossRefGoogle Scholar
Boussinesq, J. 1877 Essai sur la théorie des eaux courantes. Imprimerie nationale.Google Scholar
Capocci, D., Johnson, P.L., Oughton, S., Biferale, L. & Linkmann, M. 2023 New exact Betchov-like relation for the helicity flux in homogeneous turbulence. J. Fluid Mech. 963, R1.10.1017/jfm.2023.236CrossRefGoogle Scholar
Carroll, P.L. & Blanquart, G. 2013 A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 25 (10), 105114.10.1063/1.4826315CrossRefGoogle Scholar
Chai, X. & Mahesh, K. 2012 Dynamic-equation model for large-eddy simulation of compressible flows. J. Fluid Mech. 699, 385413.10.1017/jfm.2012.115CrossRefGoogle Scholar
Chernyshov, A.A., Karelsky, K.V. & Petrosyan, A.S. 2010 Weakly compressible turbulence in local interstellar medium. three-dimensional modeling using large eddy simulation method. In AIP Conf, vol. 1242, pp. 197204. American Institute of Physics.10.1063/1.3460124CrossRefGoogle Scholar
Curran, E., Heiser, W. & Pratt, D. 1996 Fluid phenomena in scramjet combustion systems. Annu. Rev. Fluid Mech. 28, 323360.10.1146/annurev.fl.28.010196.001543CrossRefGoogle Scholar
Davidson, P.A. 2015 Turbulence: An Introduction for Scientists and Engineers, 2nd edn. Oxford University Press.10.1093/acprof:oso/9780198722588.001.0001CrossRefGoogle Scholar
Dong, S., Huang, Y., Yuan, X. & Lozano-Durán, A. 2020 The coherent structure of the kinetic energy transfer in shear turbulence. J. Fluid Mech. 892, A22.10.1017/jfm.2020.195CrossRefGoogle Scholar
Donzis, D.A. & John, J.P. 2020 Universality and scaling in homogeneous compressible turbulence. Phys. Rev. Fluids 5, 084609.10.1103/PhysRevFluids.5.084609CrossRefGoogle Scholar
Elmegreen, B.G. & Scalo, J. 2004 Interstellar turbulence I: observations and processes. Annu. Rev. Astron. Astrophys. 42, 211273.10.1146/annurev.astro.41.011802.094859CrossRefGoogle Scholar
Erlebacher, G. & Sarkar, S. 1993 Statistical analysis of the rate of strain tensor in compressible homogeneous turbulence. Phys. Fluids 5, 32403254.10.1063/1.858681CrossRefGoogle Scholar
Eyink, G. 2006 Multi-scale gradient expansion of the turbulent stress tensor. J. Fluid Mech. 549, 159190.10.1017/S0022112005007895CrossRefGoogle Scholar
Eyink, G.L. & Drivas, T.D. 2018 Cascades and dissipative anomalies in compressible fluid turbulence. Phys. Rev. X 8, 011022.Google Scholar
Falkovich, G., Fouxon, I. & Oz, Y. 2010 New relations for correlation functions in Navier–Stokes turbulence. J. Fluid Mech. 644, 465472.10.1017/S0022112009993429CrossRefGoogle Scholar
Falkovich, G. & Kritsuk, A.G. 2017 How vortices and shocks provide for a flux loop in two-dimensional compressible turbulence. Phys. Rev. Fluids 2, 092603.10.1103/PhysRevFluids.2.092603CrossRefGoogle Scholar
Fang, J., Gao, F., Moulinec, C. & Emerson, D. 2019 An improved parallel compact scheme for domain-decoupled simulation of turbulence. Intl J. Numer. Meth. Fluids 90, 479500.10.1002/fld.4731CrossRefGoogle Scholar
Fang, J., Li, Z. & Lu, L. 2013 An optimized low-dissipation monotonicity-preserving scheme for numerical simulations of high-speed turbulent flows. J. Sci. Comput. 56, 6795.10.1007/s10915-012-9663-yCrossRefGoogle Scholar
Fang, J., Yao, Y., Li, Z. & Lu, L. 2014 Investigation of low-dissipation monotonicity-preserving scheme for direct numerical simulation of compressible turbulent flows. Comput. Fluids 104, 5572.10.1016/j.compfluid.2014.07.024CrossRefGoogle Scholar
Fang, J., Yao, Y., Zheltovodov, A.A., Li, Z. & Lu, L. 2015 Direct numerical simulation of supersonic turbulent flows around a tandem expansion–compression corner. Phys. Fluids 27, 125104.10.1063/1.4936576CrossRefGoogle Scholar
Fang, J., Zheltovodov, A.A., Yao, Y., Moulinec, C. & Emerson, D.R. 2020 On the turbulence amplification in shock-wave/turbulent boundary layer interaction. J. Fluid Mech. 897, A32.10.1017/jfm.2020.350CrossRefGoogle Scholar
Fang, L., Zhang, Y., Fang, J. & Zhu, Y. 2016 Relation of the fourth-order statistical invariants of velocity gradient tensor in isotropic turbulence. Phys. Rev. E 94, 023114.10.1103/PhysRevE.94.023114CrossRefGoogle ScholarPubMed
Fauchet, G. 1998 Modélisation en deux points de la turbulence isotrope compressible et validation à l’aide de simulations numériques. PhD thesis. Université Claude Bernard-Lyon 1.Google Scholar
Ferrand, R., Galtier, S., Sahraoui, F. & Federrath, C. 2020 Compressible turbulence in the interstellar medium: new insights from a high-resolution supersonic turbulence simulation. Astrophys. J. 904, 160.10.3847/1538-4357/abb76eCrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press 10.1017/CBO9781139170666CrossRefGoogle Scholar
Galtier, S. & Banerjee, S. 2011 Exact relation for correlation functions in compressible isothermal turbulence. Phys. Rev. Lett. 107, 134501.10.1103/PhysRevLett.107.134501CrossRefGoogle ScholarPubMed
Germano, M. 1992 Turbulence: the filtering approach. J. Fluid Mech. 238, 325336.10.1017/S0022112092001733CrossRefGoogle Scholar
Goto, S., Saito, Y. & Kawahara, G. 2017 Hierarchy of antiparallel vortex tubes in spatially periodic turbulence at high Reynolds numbers. Phys. Rev. Fluids 2, 064603.10.1103/PhysRevFluids.2.064603CrossRefGoogle Scholar
Gottlieb, S. & Shu, C.-W. 1998 Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 7385.10.1090/S0025-5718-98-00913-2CrossRefGoogle Scholar
Hellinger, P., Papini, E., Verdini, A., Landi, S., Franci, L., Matteini, L. & Montagud-Camps, V. 2021 a Spectral transfer and Kármán–Howarth–Monin equations for compressible hall magnetohydrodynamics. Astrophys. J. 917, 101.10.3847/1538-4357/ac088fCrossRefGoogle Scholar
Hellinger, P., Verdini, A., Landi, S., Papini, E., Franci, L. & Matteini, L. 2021 b Scale dependence and cross-scale transfer of kinetic energy in compressible hydrodynamic turbulence at moderate Reynolds numbers. Phys. Rev. Fluids 6, 044607.10.1103/PhysRevFluids.6.044607CrossRefGoogle Scholar
Jagannathan, S. & Donzis, D.A. 2016 Reynolds and Mach number scaling in solenoidally-forced compressible turbulence using high-resolution direct numerical simulations. J. Fluid Mech. 789, 669707.10.1017/jfm.2015.754CrossRefGoogle Scholar
Johnson, P.L. 2020 Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions. Phys. Rev. Lett. 124, 104501.10.1103/PhysRevLett.124.104501CrossRefGoogle ScholarPubMed
Johnson, P.L. 2021 On the role of vorticity stretching and strain self-amplification in the turbulence energy cascade. J. Fluid Mech. 922, A3.10.1017/jfm.2021.490CrossRefGoogle Scholar
Kida, S. & Orszag, S.A. 1992 Energy and spectral dynamics in decaying compressible turbulence. J. Sci. Comput. 7, 134.10.1007/BF01060209CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 a Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 1618.Google Scholar
Kolmogorov, A.N. 1941 b The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299303.Google Scholar
Kovasznay, L.S. 1953 Turbulence in supersonic flow. J. Aeronaut. Sci. 20, 657674.10.2514/8.2793CrossRefGoogle Scholar
Kritsuk, A.G., Wagner, R. & Norman, M.L. 2013 Energy cascade and scaling in supersonic isothermal turbulence. J. Fluid Mech. 729, R1.10.1017/jfm.2013.342CrossRefGoogle Scholar
Lai, C.C.K., Charonko, J.J. & Prestridge, K. 2018 A Kármán–Howarth–Monin equation for variable-density turbulence. J. Fluid Mech. 843, 382418.10.1017/jfm.2018.125CrossRefGoogle Scholar
Lele, S.K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 1642.10.1016/0021-9991(92)90324-RCrossRefGoogle Scholar
Lin, C.C. 1947 Remarks on the spectrum of turbulence. In Proceedings of the First Symposium of Applied Mathematics, pp. 8186. American Mathematical Society.Google Scholar
Lindborg, E. 2019 A note on acoustic turbulence. J. Fluid Mech. 874, R2.10.1017/jfm.2019.523CrossRefGoogle Scholar
McKeown, R., Pumir, A., Rubinstein, S.M., Brenner, M.P. & Ostilla-Mónico, R. 2023 Energy transfer and vortex structures: visualizing the incompressible turbulent energy cascade. New J. Phys. 25, 103029.10.1088/1367-2630/acffebCrossRefGoogle Scholar
Meneveau, C. & Katz, J. 2000 Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32, 132.10.1146/annurev.fluid.32.1.1CrossRefGoogle Scholar
Miura, H. & Kida, S. 1995 Acoustic energy exchange in compressible turbulence. Phys. Fluids 7, 1732.10.1063/1.868488CrossRefGoogle Scholar
Modesti, D., Sathyanarayana, S., Salvadore, F. & Bernardini, M. 2022 Direct numerical simulation of supersonic turbulent flows over rough surfaces. J. Fluid Mech. 942, A44.10.1017/jfm.2022.393CrossRefGoogle Scholar
Monin, A.S. & Yaglom, A.M. 1975 Statistical Fluid Mechanics. Cambridge University Press.Google Scholar
Moser, R.D., Haering, S.W. & Yalla, G.R. 2021 Statistical properties of subgrid-scale turbulence models. Annu. Rev. Fluid Mech. 53, 255286.10.1146/annurev-fluid-060420-023735CrossRefGoogle Scholar
Ogden, D.E., Glatzmaier, G.A. & Wohletz, K.H. 2008 Effects of vent overpressure on buoyant eruption columns: implications for plume stability. Earth Planet. Sci. Lett. 268, 283292.10.1016/j.epsl.2008.01.014CrossRefGoogle Scholar
Pan, S. & Johnsen, E. 2017 The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence. J. Fluid Mech. 833, 717744.10.1017/jfm.2017.598CrossRefGoogle Scholar
Petersen, M.R. & Livescu, D. 2010 Forcing for statistically stationary compressible isotropic turbulence. Phys. Fluids 22, 116101.10.1063/1.3488793CrossRefGoogle Scholar
Pirozzoli, S. & Grasso, F. 2004 Direct numerical simulations of isotropic compressible turbulence: influence of compressibility on dynamics and structures. Phys. Fluids 16, 43864407.10.1063/1.1804553CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Qi, H., Li, X., Hu, R. & Yu, C. 2022 Quasi-dynamic subgrid-scale kinetic energy equation model for large-eddy simulation of compressible flows. J. Fluid Mech. 947, A22.10.1017/jfm.2022.654CrossRefGoogle Scholar
Qian, J. 1994 Skewness factor of turbulent velocity derivative. Acta Mechanica Sin. 10, 1215.Google Scholar
Richardson, L.F. 1922 Weather Prediction by Numerical Processes. Cambridge University Press.Google Scholar
Ristorcelli, J. 1997 A pseudo-sound constitutive relationship for the dilatational covariances in compressible turbulence. J. Fluid Mech. 347, 3770.10.1017/S0022112097006083CrossRefGoogle Scholar
Sagaut, P. 2006 Large Eddy Simulation for Incompressible Flows, 3rd edn. Springer.Google Scholar
Sagaut, P. & Cambon, C. 2018 Homogeneous Turbulence Dynamics, 2nd edn. Springer Cham.10.1007/978-3-319-73162-9CrossRefGoogle Scholar
Samtaney, R., Pullin, D.I. & Kosović, B. 2001 Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13, 1415.10.1063/1.1355682CrossRefGoogle Scholar
Scalo, J. & Elmegreen, B.G. 2004 Interstellar turbulence II: implications and effects. Annu. Rev. Astron. Astrophys. 42, 275316.10.1146/annurev.astro.42.120403.143327CrossRefGoogle Scholar
Schmidt, W. & Grete, P. 2019 Kinetic and internal energy transfer in implicit large-eddy simulations of forced compressible turbulence. Phys. Rev. E 100, 043116.10.1103/PhysRevE.100.043116CrossRefGoogle ScholarPubMed
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. Mon. Weath. Rev. 91, 99164.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Spina, E.F., Smits, A.J. & Robinson, S.K. 1994 The physics of supersonic turbulent boundary layers. Annu. Rev. Fluid Mech. 26, 287319.10.1146/annurev.fl.26.010194.001443CrossRefGoogle Scholar
Tennekes, H. & Lumley, J.L. 1972 A First Course in Turbulence. MIT Press.10.7551/mitpress/3014.001.0001CrossRefGoogle Scholar
Von Kármán, T. & Howarth, L. 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. Ser. A - Math. Phys. Sci. 164, 192.Google Scholar
Von Kármán, T. & Lin, C.C. 1951 On the statistical theory of isotropic turbulence. Adv. Appl. Mech 2, 1.10.1016/S0065-2156(08)70297-7CrossRefGoogle Scholar
Wagner, R., Falkovich, G., Kritsuk, A.G. & Norman, M.L. 2012 Flux correlations in supersonic isothermal turbulence. J. Fluid Mech. 713, 482490.10.1017/jfm.2012.470CrossRefGoogle Scholar
Waltrup, P.J. 1987 Liquid-fueled supersonic combustion ramjets-a research perspective. J. Propul. Power 3, 515524.10.2514/3.23019CrossRefGoogle Scholar
Wang, J., Gotoh, T. & Watanabe, T. 2017 Spectra and statistics in compressible isotropic turbulence. Phys. Rev. Fluids 2, 013403.10.1103/PhysRevFluids.2.013403CrossRefGoogle Scholar
Wang, J., Shi, Y., Wang, L.-P., Xiao, Z., He, X.T. & Chen, S. 2012 a Effect of compressibility on the small-scale structures in isotropic turbulence. J. Fluid Mech. 713, 588631.10.1017/jfm.2012.474CrossRefGoogle Scholar
Wang, J., Shi, Y., Wang, L.-P., Xiao, Z., He, X.T. & Chen, S. 2012 b Scaling and statistics in three-dimensional compressible turbulence. Phys. Rev. Lett. 108, 214505.10.1103/PhysRevLett.108.214505CrossRefGoogle ScholarPubMed
Wang, J., Wang, L.-P., Xiao, Z., Shi, Y. & Chen, S. 2010 A hybrid numerical simulation of isotropic compressible turbulence. J. Comput. Phys. 229 (13), 52575279.10.1016/j.jcp.2010.03.042CrossRefGoogle Scholar
Wang, J., Yang, Y., Shi, Y., Xiao, Z., He, X.T. & Chen, S. 2013 Cascade of kinetic energy in three-dimensional compressible turbulence. Phys. Rev. Lett. 110, 214505.10.1103/PhysRevLett.110.214505CrossRefGoogle ScholarPubMed
William, S. 1893 The viscosity of gases and molecular force. Lond. Edinburgh Phil. Mag. 36 (223), 507531.Google Scholar
Yang, P.-F., Fang, J., Fang, L., Pumir, A. & Xu, H. 2022 Low-order moments of the velocity gradient in homogeneous compressible turbulence. J. Fluid Mech. 947, R1.10.1017/jfm.2022.622CrossRefGoogle Scholar
Yang, P.-F., Pumir, A. & Xu, H. 2018 Generalized self-similar spectrum and the effect of large-scale in decaying homogeneous isotropic turbulence. New J. Phys. 20, 103035.10.1088/1367-2630/aae72dCrossRefGoogle Scholar
Yang, P.-F., Zhou, Z., Xu, H. & He, G. 2023 Strain self-amplification is larger than vortex stretching due to an invariant relation of filtered velocity gradients. J. Fluid Mech. 955, A15.10.1017/jfm.2022.1072CrossRefGoogle Scholar
Yoshizawa, A. 1986 Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys. Fluids 29, 21522164.10.1063/1.865552CrossRefGoogle Scholar
Zang, T.A., Dahlburg, R. & Dahlburg, J. 1992 Direct and large-eddy simulations of three-dimensional compressible Navier–Stokes turbulence. Phys. Fluids 4 (1), 127140.10.1063/1.858491CrossRefGoogle Scholar
Zhang, X., Dhariwal, R., Portwood, G., Kops, S.M.D. & Bragg, A.D. 2022 Analysis of scale-dependent kinetic and potential energy in sheared, stably stratified turbulence. J. Fluid Mech. 946, A6.10.1017/jfm.2022.554CrossRefGoogle Scholar