Hostname: page-component-54dcc4c588-42vt5 Total loading time: 0 Render date: 2025-10-05T08:41:45.388Z Has data issue: false hasContentIssue false

Analysis of laminar magnetohydrodynamic flow in the wake past a spheroid

Published online by Cambridge University Press:  26 August 2025

Tong-Tong Liu
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
Jun-Hua Pan*
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics and University of Chinese Academy of Sciences, Beijing 100190, PR China
Ming-Jiu Ni*
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics and University of Chinese Academy of Sciences, Beijing 100190, PR China
*
Corresponding authors: Ming-Jiu Ni, mjni@ucas.ac.cn; Jun-Hua Pan, panjunhua@ucas.ac.cn
Corresponding authors: Ming-Jiu Ni, mjni@ucas.ac.cn; Jun-Hua Pan, panjunhua@ucas.ac.cn

Abstract

This study employs a direct numerical simulation method to investigate the wake pattern evolutions of flows past an insulated spheroid and provides expressions of force and torque coefficients influenced by a streamwise magnetic field in an incompressible, conducting, viscous fluid. A total of 1150 cases are examined covering a parameter range of Reynolds number $50 \leqslant \textit{Re} \leqslant 250$, aspect ratio $1.5 \leqslant \beta \leqslant 6$, inclination angle $0^\circ \leqslant \theta \leqslant 90^\circ$, and interaction parameter $0 \leqslant N \leqslant 10$, where $\beta$ and $N$, respectively, reflect the anisotropy of the spheroid and the strength of magnetic field. Nine wake patterns are classified based on wake structure features and summarised in three maps of regimes according to the inclination angle. The transition mechanisms among these wake patterns are also investigated under the influence of a streamwise magnetic field. Furthermore, expressions for drag, lift and torque coefficients are derived with the help of three fundamental physical criteria. Results indicate that the force and torque expressions give a good prediction within the present parameter space $\{\textit{Re}, \beta , \theta , N\}$.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

These authors contributed equally to this work and should be considered co-first authors.

References

Cantwell, C.D. & Barkley, D. 2010 Computational study of subcritical response in flow past a circular cylinder. Phys. Rev. E 82 (2), 026315.10.1103/PhysRevE.82.026315CrossRefGoogle Scholar
Chen, Y., Jiang, P., Xiong, T., Wei, W., Fang, Z.L. & Wang, B. 2021 Drag and heat transfer coefficients for axisymmetric nonspherical particles: a LBM study. Chem. Engng J. 424, 130391.10.1016/j.cej.2021.130391CrossRefGoogle Scholar
Cong, C.H., Deng, X.G. & Mao, M.L. 2021 Advances in complex low speed flow around a prolate spheroid. Adv. Mech. 51 (3), 467619.Google Scholar
Cui, Z.W., Wang, Z., Jiang, X.Y & Zhao, L.H. 2022 Numerical study of non-spherical particle-laden flows. Adv. Mech. 52 (3), 623672.Google Scholar
Davidson, P.A. 2017 An Introduction to Magnetohydrodynamics. Cambridge, Cambridge University Press.Google Scholar
Delacroix, J. & Davoust, L. 2018 Drag upon a sphere suspended in a low magnetic-Reynolds number MHD channel flow. Phys. Rev. Fluids 3 (12), 123701.10.1103/PhysRevFluids.3.123701CrossRefGoogle Scholar
El Khoury, G.K., Andersson, H.I. & Petterson, B. 2012 Wakes behind a prolate spheroid in crossflow. J. Fluid Mech. 701, 98136.10.1017/jfm.2012.135CrossRefGoogle Scholar
Ern, P., Risso, F., Fabre, D. & Magnaudet, J. 2012 Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech. 44 (1), 97121.10.1146/annurev-fluid-120710-101250CrossRefGoogle Scholar
Frank, M., Barleon, L. & Müller, U. 2001 Visual analysis of two-dimensional magnetohydrodynamics. Phys. Fluids 13 (8), 22872295.10.1063/1.1383785CrossRefGoogle Scholar
Fröhlich, K., Meinke, M. & Schröder, W. 2020 Correlations for inclined prolates based on highly resolved simulations. J. Fluid Mech. 901, A5.10.1017/jfm.2020.482CrossRefGoogle Scholar
Ghidersa, B. & Dušek, J. 2000 Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere. J. Fluid Mech. 423, 3369.10.1017/S0022112000001701CrossRefGoogle Scholar
Happel, J. & Brenner, H. 2012 Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media. Springer.Google Scholar
Hölzer, A. & Sommerfeld, M. 2008 New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technol. 184 (3), 361365.10.1016/j.powtec.2007.08.021CrossRefGoogle Scholar
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102 (715), 161179.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.10.1017/S0022112095000462CrossRefGoogle Scholar
Johnson, T.A. & Patel, V.C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.10.1017/S0022112098003206CrossRefGoogle Scholar
Kanaris, N., Albets, X., Grigoriadis, D. & Kassinos, S. 2013 Three-dimensional numerical simulations of magnetohydrodynamic flow around a confined circular cylinder under low, moderate, and strong magnetic fields. Phys. Fluids 25 (7), 074102.10.1063/1.4811398CrossRefGoogle Scholar
Kolesnikov, Y.B. & Tsinober, A.B. 1974 Experimental investigation of two-dimensional turbulence behind a grid. Fluid Dyn. 9, 621624.10.1007/BF01031323CrossRefGoogle Scholar
Ku, J., Wang, K., Wang, Q. & Lei, Z. 2024 Application of magnetic separation technology in resource utilization and environmental treatment. Separations 11 (5), 130.10.3390/separations11050130CrossRefGoogle Scholar
Kubota, Y., Yoshikawa, N. & Taniguchi, S. 2001 Electromagnetic migration force acting on two non-conducting particles in dc electromagnetic force field. Tetsu-to-Hagane 87 (3), 113120.10.2355/tetsutohagane1955.87.3_113CrossRefGoogle Scholar
Lahjomri, J., Capéran, P. & Alemany, A. 1993 The cylinder wake in a magnetic field aligned with the velocity. J. Fluid Mech. 253, 421448.10.1017/S0022112093001855CrossRefGoogle Scholar
Lighthill, M.J. 1963 Boundary Layer Theory in Laminar Boundary Layers (ed. Rosenhead, L.). Oxford, Oxford University Press.Google Scholar
Maxworthy, T. 1962 Measurements of drag and wake structure in magneto-fluid dynamic flow about a sphere. In Heat Transfer and Fluid Mech. Inst, pp. 197205, Stanford University Press.Google Scholar
Molokov, S.S., Moreau, R. & Moffatt, H.K. 2007 Magnetohydrodynamics: Historical Evolution and Trends. Springer.10.1007/978-1-4020-4833-3CrossRefGoogle Scholar
Moreau, R.J. 1990 Magnetohydrodynamics. Springer.10.1007/978-94-015-7883-7CrossRefGoogle Scholar
Mück, B., Günther, C., Müller, U. & Bühler, L. 2000 Three-dimensional mhd flows in rectangular ducts with internal obstacles. J. Fluid Mech. 418, 265295.10.1017/S0022112000001300CrossRefGoogle Scholar
Mutschke, G., Gerbeth, G., Shatrov, V. & Tomboulides, A. 2001 The scenario of three-dimensional instabilities of the cylinder wake in an external magnetic field: a linear stability analysis. Phys. Fluids 13 (3), 723734.10.1063/1.1344895CrossRefGoogle Scholar
Oberbeck, A. 1876 Ueber stationäre flüssigkeitsbewegungen mit berücksichtigung der inneren reibung. J. Reine Angew. Math. 81, 6290.Google Scholar
Ormières, D. & Provansal, M. 1999 Transition to turbulence in the wake of a sphere. Phys. Rev. Lett. 83 (1), 80.10.1103/PhysRevLett.83.80CrossRefGoogle Scholar
Ouchene, R., Khalij, M., Arcen, B. & Tanière, A. 2016 A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large reynolds numbers. Powder Technol. 303, 3343.10.1016/j.powtec.2016.07.067CrossRefGoogle Scholar
Ozernykh, V.S. & Kolesnichenko, I.V. 2021 The action of an electromagnetic force on an elongated inclusion in an electrically conductive liquid. J. Phys. Conf. Ser. 1945, 012047.10.1088/1742-6596/1945/1/012047CrossRefGoogle Scholar
Pan, J.H., Zhang, N.M. & Ni, M.J. 2018 The wake structure and transition process of a flow past a sphere affected by a streamwise magnetic field. J. Fluid Mech. 842, 248272.10.1017/jfm.2018.133CrossRefGoogle Scholar
Pan, J.H., Zhang, N.M. & Ni, M.J. 2019 Wake structure of laminar flow past a sphere under the influence of a transverse magnetic field. J. Fluid Mech. 873, 151173.10.1017/jfm.2019.423CrossRefGoogle Scholar
Richter, A. & Nikrityuk, P.A. 2012 Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers. Intl J. Multiphase Flow 55 (4), 13431354.Google Scholar
Sanjeevi, S.K.P., Kuipers, J.A.M. & Padding, J.T. 2018 Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers. Intl J. Multiphase Flow 106, 325337.10.1016/j.ijmultiphaseflow.2018.05.011CrossRefGoogle Scholar
Sanjeevi, S.K.P. & Padding, J.T. 2017 On the orientational dependence of drag experienced by spheroids. J. Fluid Mech. 820, R1.10.1017/jfm.2017.239CrossRefGoogle Scholar
Sekhar, T.V.S., Sivakumar, R. & Ravi Kumar, T.V.R. 2005 Magnetohydrodynamic flow around a sphere. Fluid Dyn. Res. 37 (5), 357373.10.1016/j.fluiddyn.2005.08.003CrossRefGoogle Scholar
Shu, D., Li, T.-X., Sun, B.-D., Zhou, Y.-H., Wang, J. & Xu, Z.-M. 2000 a Numerical calculation of the electromagnetic expulsive force upon nonmetallic inclusions in an aluminum melt: Part I. Spherical particles. Metall. Mater. Trans. B 31, 15271533.10.1007/s11663-000-0037-8CrossRefGoogle Scholar
Shu, D., Li, T.-X., Sun, B.-D., Zhou, Y.-H., Wang, J. & Xu, Z.-M. 2000 b Numerical calculation of the electromagnetic expulsive force upon nonmetallic inclusions in an aluminum melt: Part II. Cylindrical particles. Metall. Mater. Trans. B 31, 15351540.10.1007/s11663-000-0038-7CrossRefGoogle Scholar
Tomboulides, A.G. & Orszag, S.A. 2000 Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech. 416, 4573.10.1017/S0022112000008880CrossRefGoogle Scholar
Wang, K.C. 1972 Separation patterns of boundary layer over an inclined body of revolution. AIAA J. 10 (8), 10441050.10.2514/3.50292CrossRefGoogle Scholar
Wang, K.C. 1974 Boundary layer over a blunt body at high incidence with an open-type of separation. Proc. R. Soc. Lond. A 340(1620), 3355.Google Scholar
Wang, Z., Yang, J.Z., Andersson, H.L., Zhu, X.W., Liu, M.H., Wang, L.P. & Lu, X.M. 2021 Numerical investigation on the flow around an inclined prolate spheroid. Phys. Fluids 33 (7), 074106.10.1063/5.0058516CrossRefGoogle Scholar
Williamson, C.H.K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.10.1146/annurev.fl.28.010196.002401CrossRefGoogle Scholar
Wu, J.Z. 1983 Fluid Mechanics. Peking University Press.Google Scholar
Yonas, G. 1967 Measurements of drag in a conducting fluid with an aligned field and large interaction parameter. J. Fluid Mech. 30 (4), 813821.10.1017/S002211206700179XCrossRefGoogle Scholar
Zastawny, M., Mallouppas, G., Zhao, F. & Van Wachem, B. 2012 Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Intl J. Multiphase Flow 39, 227239.10.1016/j.ijmultiphaseflow.2011.09.004CrossRefGoogle Scholar
Zhang, L.F., Wang, S.L., Dong, A.P., Gao, J.W. & Damoah, L.N.W. 2014 Application of electromagnetic (em) separation technology to metal refining processes: a review. Metall. Mater. Trans. B 45, 21532185.10.1007/s11663-014-0123-yCrossRefGoogle Scholar
Zheng, X.L., Pan, J.H. & Ni, M.J. 2023 Linear global stability of a flow past a sphere under a streamwise magnetic field. J. Fluid Mech. 970, A16.10.1017/jfm.2023.617CrossRefGoogle Scholar