Hostname: page-component-6bb9c88b65-spzww Total loading time: 0 Render date: 2025-07-27T06:32:39.810Z Has data issue: false hasContentIssue false

Undulatory underwater swimming: linking vortex dynamics, thrust and wake structure with a biorobotic fish

Published online by Cambridge University Press:  23 July 2025

Christophe Brouzet*
Affiliation:
Université Côte d’Azur, CNRS, INPHYNI, Nice, France
Christophe Raufaste
Affiliation:
Université Côte d’Azur, CNRS, INPHYNI, Nice, France Institut Universitaire de France (IUF), Paris, France
Médéric Argentina
Affiliation:
Université Côte d’Azur, CNRS, INPHYNI, Nice, France
*
Corresponding author: Christophe Brouzet, christophe.brouzet@univ-cotedazur.fr

Abstract

Flapping-based propulsive systems rely on fluid–structure interactions to produce thrust. At intermediate and high Reynolds numbers, vortex formation and organisation in the wake of such systems are crucial for the generation of a propulsive force. In this work, we experimentally investigate the wake produced by a tethered robotic fish immersed in a water tunnel. By systematically varying the amplitude and frequency of the fish tail as well as the free stream speed, we are able to observe and characterise different vortex streets as a function of the Strouhal number. The produced wakes are three-dimensional and exhibit a classical V-shape, mainly with two oblique trains of vortex rings convecting outward. Using two-dimensional particle image velocimetry in the mid-span plane behind the fish and through extensive data processing of the velocity and vorticity fields, we demonstrate the strong couplings at place between vortex dynamics, thrust production and wake structure. The main results are twofold. First, by accounting for the obliqueness of the vortex trains, we quantify in experiments the evolution of vortex velocity components in both streamwise and transverse directions. We also measure key geometrical and dynamical properties such as wake angle, vortex ring orientation, diameter and vorticity. Remarkably, all of these quantities collapse onto master curves that also encompass data from previous studies. Second, we develop a quasi-two-dimensional model that incorporates both components of the momentum balance equation and introduces an effective spanwise thickness of the wake structure. This additional dimension, which scales with the physical thickness of the fish, captures the fine features of the three-dimensional wake. The model successfully explains the experimental master curves and highlights the links between vortex dynamics, thrust and wake geometry. Together, this framework offers a comprehensive understanding of the influence of the Strouhal number, providing universal insights relevant for both biological locomotion and bio-inspired propulsion systems.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andersen, A., Bohr, T., Schnipper, T. & Walther, J.H. 2017 Wake structure and thrust generation of a flapping foil in two-dimensional flow. J. Fluid Mech. 812, R4.10.1017/jfm.2016.808CrossRefGoogle Scholar
Anderson, J.M., Streitlien, K., Barrett, D.S. & Triantafyllou, M.S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.10.1017/S0022112097008392CrossRefGoogle Scholar
Bainbridge, R. 1958 The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat. J. Exp. Biol. 35 (1), 109133.10.1242/jeb.35.1.109CrossRefGoogle Scholar
Batchelor, G.K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bergmann, M. & Iollo, A. 2016 Bioinspired swimming simulations. J. Comput. Phys. 323, 310321.10.1016/j.jcp.2016.07.022CrossRefGoogle Scholar
Blickhan, R., Krick, C., Zehren, D., Nachtigall, W. & Breithaupt, T. 1992 Generation of a vortex chain in the wake of a Suhundulatory swimmer. Naturwissenschaften 79 (5), 220221.10.1007/BF01227131CrossRefGoogle Scholar
Blondeaux, P., Fornarelli, F., Guglielmini, L., Triantafyllou, M.S. & Verzicco, R. 2005 Numerical experiments on flapping foils mimicking fish-like locomotion. Phys. Fluids 17 (11), 113601.10.1063/1.2131923CrossRefGoogle Scholar
Bohl, D.G. & Koochesfahani, M.M. 2009 MTV measurements of the vortical field in the wake of an airfoil oscillating at high reduced frequency. J. Fluid Mech. 620, 6388.10.1017/S0022112008004734CrossRefGoogle Scholar
Borazjani, I. & Sotiropoulos, F. 2008 Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 211 (10), 15411558.10.1242/jeb.015644CrossRefGoogle ScholarPubMed
Borazjani, I. & Sotiropoulos, F. 2009 Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 212 (4), 576592.10.1242/jeb.025007CrossRefGoogle ScholarPubMed
Borazjani, I. & Sotiropoulos, F. 2010 On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. J. Exp. Biol. 213 (1), 89107.10.1242/jeb.030932CrossRefGoogle ScholarPubMed
Buchholz, J.H.J., Clark, R.P. & Smits, A.J. 2008 Thrust performance of unsteady propulsors using a novel measurement system, and corresponding wake patterns. Exp Fluids 45 (3), 461472.10.1007/s00348-008-0489-1CrossRefGoogle ScholarPubMed
Buchholz, J.H.J., Green, M.A. & Smits, A.J. 2011 Scaling the circulation shed by a pitching panel. J. Fluid Mech. 688, 591601.10.1017/jfm.2011.408CrossRefGoogle Scholar
Buchholz, J.H.J. & Smits, A.J. 2005 Wake of a low aspect ratio pitching plate. Phys. Fluids 17, 091102.10.1063/1.1942512CrossRefGoogle Scholar
Buchholz, J.H.J. & Smits, A.J. 2006 On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. J. Fluid Mech. 546, 433443.10.1017/S0022112005006865CrossRefGoogle Scholar
Buchholz, J.H.J. & Smits, A.J. 2008 The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. J. Fluid Mech. 603, 331365.10.1017/S0022112008000906CrossRefGoogle ScholarPubMed
Clark, R.P. & Smits, A.J. 2006 Thrust production and wake structure of a batoid-inspired oscillating fin. J. Fluid Mech. 562, 415429.10.1017/S0022112006001297CrossRefGoogle ScholarPubMed
Colvert, B., Alsalman, M. & Kanso, E. 2018 Classifying vortex wakes using neural networks. Bioinspir. Biomim. 13 (2), 025003.10.1088/1748-3190/aaa787CrossRefGoogle ScholarPubMed
Couder, Y. & Basdevant, C. 1986 Experimental and numerical study of vortex couples in two-dimensional flows. J. Fluid Mech. 173, 225251.10.1017/S0022112086001155CrossRefGoogle Scholar
Das, A., Shukla, R.K. & Govardhan, R.N. 2016 Existence of a sharp transition in the peak propulsive efficiency of a low- pitching foil. J. Fluid Mech. 800, 307326.10.1017/jfm.2016.399CrossRefGoogle Scholar
Dong, H., Mittal, R., Bozkurttas, M. & Najjar, F. 2005 Wake Structure and Performance of Finite Aspect-Ratio Flapping Foils. In 43rd AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics.10.2514/6.2005-81CrossRefGoogle Scholar
Dong, H., Mittal, R. & Najjar, F.M. 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309343.10.1017/S002211200600190XCrossRefGoogle Scholar
von Ellenrieder, K.D., Parker, K. & Soria, J. 2003 Flow structures behind a heaving and pitching finite-span wing. J. Fluid Mech. 490, 129138.10.1017/S0022112003005408CrossRefGoogle Scholar
Eloy, C. 2012 Optimal Strouhal number for swimming animals. J. Fluid. Struct. 30, 205218.10.1016/j.jfluidstructs.2012.02.008CrossRefGoogle Scholar
Epps, B.P., Valdivia y Alvarado, P., Youcef-Toumi, K. & Techet, A.H. 2009 Swimming performance of a biomimetic compliant fish-like robot. Exp Fluids 47 (6), 927939.10.1007/s00348-009-0684-8CrossRefGoogle Scholar
Fu, L., Israilov, S., Sánchez-Rodríguez, J., Brouzet, C., Allibert, G., Raufaste, C. & Argentina, M. 2023 Optimum control strategies for maximum thrustproduction in underwater undulatory swimming. arXiv:2309.14025.Google Scholar
Gazzola, M., Argentina, M. & Mahadevan, L. 2014 Scaling macroscopic aquatic locomotion. Nat. Phys. 10 (10), 758761.10.1038/nphys3078CrossRefGoogle Scholar
Gibouin, F., Raufaste, C., Bouret, Y. & Argentina, M. 2018 Study of the thrust–drag balance with a swimming robotic fish. Phys. Fluids 30 (9), 091901.10.1063/1.5043137CrossRefGoogle Scholar
Godoy-Diana, R., Aider, J.-L. & Wesfreid, J.E. 2008 Transitions in the wake of a flapping foil. Phys. Rev. E 77 (1), 016308.10.1103/PhysRevE.77.016308CrossRefGoogle ScholarPubMed
Godoy-Diana, R., Marais, C., Aider, J.-L. & Wesfreid, J.E. 2009 A model for the symmetry breaking of the reverse Bénard–von Kármán vortex street produced by a flapping foil. J. Fluid Mech. 622, 2332.10.1017/S0022112008005727CrossRefGoogle Scholar
Gross, D., Roux, Y., Raufaste, C. & Médéric, A. 2021 Drag analysis with a self-propelled flexible swimmer. Phys. Rev. Fluids 6 (5), 053101.10.1103/PhysRevFluids.6.053101CrossRefGoogle Scholar
Guo, J., Han, P., Zhang, W., Wang, J., Lauder, G.V., Di Santo, V. & Dong, H. 2023 Vortex dynamics and fin-fin interactions resulting in performance enhancement in fish-like propulsion. Phys. Rev. Fluids 8 (7), 073101.10.1103/PhysRevFluids.8.073101CrossRefGoogle Scholar
Guyon, É., Hulin, J.-P. & Petit, L. 2001 Hydrodynamique Physique. edn edp sciences / cnrs editions edn. 10.1051/978-2-7598-0274-6CrossRefGoogle Scholar
Hunter, J. & Zweifel, J.R. 1971 Swimming speed, tail beat frequency, tail beat amplitude, and size in jack mackerel, trachurus symmetricus, and other fishes. Fish. Bull. 69, 253266.Google Scholar
Koochesfahani, M.M. 1989 Vortical patterns in the wake of an oscillating airfoil. AIAA J. 27 (9), 12001205.10.2514/3.10246CrossRefGoogle Scholar
Li, C. & Dong, H. 2016 Three-dimensional wake topology and propulsive performance of low-aspect-ratio pitching-rolling plates. Phys. Fluids 28 (7), 071901.10.1063/1.4954505CrossRefGoogle Scholar
Li, G., Kolomenskiy, D., Liu, H., Thiria, B. & Godoy-Diana, R. 2019 a On the energetics and stability of a minimal fish school. PLoS ONE 14 (8), e0215265.10.1371/journal.pone.0215265CrossRefGoogle ScholarPubMed
Li, G., Kolomenskiy, D., Liu, H., Thiria, B. & Godoy-Diana, R. 2019 b On the interference of vorticity and pressure fields of a minimal fish school. J. Abmech 8 (1), 2733.10.5226/jabmech.8.27CrossRefGoogle Scholar
Li, G., Kolomenskiy, D., Liu, H., Thiria, B. & Godoy-Diana, R. 2022 Hydrodynamical fingerprint of a neighbour in a fish lateral line. Front. Robot. AI 9, 825889.10.3389/frobt.2022.825889CrossRefGoogle Scholar
Mackowski, A.W. & Williamson, C.H.K. 2015 Direct measurement of thrust and efficiency of an airfoil undergoing pure pitching. J. Fluid Mech. 765, 524543.10.1017/jfm.2014.748CrossRefGoogle Scholar
Moisy, F. 2007 PIVMat: a PIV post-processing and data analysis toolbox for MATLAB. Available at: http://www.fast.u-psud.fr/pivmat.Google Scholar
Müller, U.K., Smit, J., Stamhuis, E.J. & Videler, J.J. 2001 Wake of a swimming eel. J. Exp. Biol. 204 (Pt 16), 27512762.Google ScholarPubMed
Müller, U.K., Van Den Boogaart, J.G.M. & Van Leeuwen, J.L. 2008 Flow patterns of larval fish: undulatory swimming in the intermediate flow regime. J. Exp. Biol. 211 (2), 196205.10.1242/jeb.005629CrossRefGoogle ScholarPubMed
Müller, U.K., Van Den Heuvel, B.L.E., Stamhuis, E.J. & Videler, J.J. 1997 Fish foot prints: morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus, risso). J. Exp. Biol. 200 (22), 28932906.10.1242/jeb.200.22.2893CrossRefGoogle Scholar
Nauen, J.C. & Lauder, G.V. 2002 Hydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus (Scombridae). J. Exp. Biol. 205 (12), 17091724.10.1242/jeb.205.12.1709CrossRefGoogle ScholarPubMed
Parker, K., Von Ellenrieder, K.D. & Soria, J. 2005 Using stereo multigrid DPIV (SMDPIV) measurements to investigate the vortical skeleton behind a finite-span flapping wing. Exp. Fluids 39 (2), 281298.10.1007/s00348-005-0971-yCrossRefGoogle Scholar
Partridge, B.L. & Pitcher, T.J. 1980 The sensory basis of fish schools: relative roles of lateral line and vision. J. Comp. Physiol. 135 (4), 315325.10.1007/BF00657647CrossRefGoogle Scholar
Quinn, D.B., Lauder, G.V. & Smits, A.J. 2015 Maximizing the efficiency of a flexible propulsor using experimental optimization. J. Fluid Mech. 767, 430448.10.1017/jfm.2015.35CrossRefGoogle Scholar
Rohr, J.J. & Fish, F.E. 2004 Strouhal numbers and optimization of swimming by odontocete cetaceans. J. Exp. Biol. 207 (10), 16331642.10.1242/jeb.00948CrossRefGoogle ScholarPubMed
Saadat, M., Fish, F.E., Domel, A.G., Di Santo, V., Lauder, G.V. & Haj-Hariri, H. 2017 On the rules for aquatic locomotion. Phys. Rev. Fluids 2 (8), 083102.10.1103/PhysRevFluids.2.083102CrossRefGoogle Scholar
Sánchez-Rodríguez, J., Celestini, F., Raufaste, C. & Argentina, M. 2021 Proprioceptive mechanism for bioinspired fish swimming. Phys. Rev. Lett. 126 (23), 234501.10.1103/PhysRevLett.126.234501CrossRefGoogle ScholarPubMed
Sánchez-Rodríguez, J., Raufaste, C. & Argentina, M. 2023 Scaling the tail beat frequency and swimming speed in underwater undulatory swimming. Nat. Commun. 14 (1), 5569.10.1038/s41467-023-41368-6CrossRefGoogle ScholarPubMed
Schnipper, T., Andersen, A. & Bohr, T. 2009 Vortex wakes of a flapping foil. J. Fluid Mech. 633, 411423.10.1017/S0022112009007964CrossRefGoogle Scholar
Spedding, G.R. 2014 Wake signature detection. Annu. Rev. Fluid Mech. 46 (1), 273302.10.1146/annurev-fluid-011212-140747CrossRefGoogle Scholar
Triantafyllou, G.S., Triantafyllou, M.S. & Grosenbaugh, M.A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluid. Struct. 7 (2), 205224.10.1006/jfls.1993.1012CrossRefGoogle Scholar
Triantafyllou, M.S., Triantafyllou, G.S. & Gopalkrishnan, R. 1991 Wake mechanics for thrust generation in oscillating foils. Phys. Fluids A: Fluid Dyn. 3 (12), 28352837.10.1063/1.858173CrossRefGoogle Scholar
Tytell, E.D., Borazjani, I., Sotiropoulos, F., Baker, T.V., Anderson, E.J. & Lauder, G.V. 2010 Disentangling the functional roles of morphology and motion in the swimming of fish. Integr. Comp. Biol. 50 (6), 11401154.10.1093/icb/icq057CrossRefGoogle ScholarPubMed
Tytell, E.D. & Lauder, G.V. 2004 The hydrodynamics of eel swimming. J. Exp. Biol. 207 (11), 18251841.10.1242/jeb.00968CrossRefGoogle ScholarPubMed
Van Dyke, M. 1982 An Album of Fluid Motion. Parabolic Press.10.1115/1.3241909CrossRefGoogle Scholar
Van Rees, W.M., Gazzola, M. & Koumoutsakos, P. 2013 Optimal shapes for anguilliform swimmers at intermediate Reynolds numbers. J. Fluid Mech. 722, R3.10.1017/jfm.2013.157CrossRefGoogle Scholar
Verma, S., Novati, G. & Koumoutsakos, P. 2018 Efficient collective swimming by harnessing vortices through deep reinforcement learning. Proc. Natl Acad. Sci. USA 115 (23), 58495854.10.1073/pnas.1800923115CrossRefGoogle ScholarPubMed
Weihs, D. 1973 Hydromechanics of fish schooling. Nature 241 (5387), 290291.10.1038/241290a0CrossRefGoogle Scholar
Williamson, C.H.K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2 (4), 355381.10.1016/S0889-9746(88)90058-8CrossRefGoogle Scholar