Hostname: page-component-54dcc4c588-nx7b4 Total loading time: 0 Render date: 2025-10-02T04:55:33.482Z Has data issue: false hasContentIssue false

Turbulent amplification mechanism and inter-component energy transfer in strong and weak shock-wave turbulence boundary layer interaction

Published online by Cambridge University Press:  30 September 2025

Xin Zhang
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
Mingze Han
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
Denggao Tang
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
Feng Qu
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, PR China
Chao Yan*
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, PR China
*
Corresponding author: Chao Yan, yanchao@buaa.edu.cn

Abstract

Turbulence amplification is crucial in shock-wave/turbulent boundary layer interaction (SWTBLI). To examine the impact of interaction intensity on turbulence amplification and inter-component energy transfer, direct numerical simulations of impinging oblique shock reflections at strong ($37^\circ$) and weak ($33.2^\circ$) incident angles are conducted. The results indicate that strong interaction generates a larger permanent separation zone, featuring the unique ‘oblique platform’ in Reynolds stress peaks and ‘secondary turbulence amplification’ downstream. Reynolds stress budget and spanwise spectral analyses reveal that $\widetilde {u^{\prime \prime}u^{\prime \prime}}$ and $-\!\widetilde{\ u^{\prime\prime}v^{\prime\prime}}$ amplify primarily by production terms. $u''$, $v''$ and $w''$ represent the streamwise, wall-normal and spanwise velocity fluctuations. At the investigated Reynolds number, deceleration effect dominates the initial amplification of $\widetilde {u^{\prime \prime}u^{\prime \prime}}$, influencing multi-scale wall-bounded turbulence structures, while shear effect remains active along the shear layer and may primarily affects streaky structures. The initial amplification of $-\!\widetilde{\ u^{\prime\prime}v^{\prime\prime}}$ is driven by the adverse pressure gradient, which reshapes the velocity profile and affects the wall-normal velocity. The primary energy for $\!\widetilde{\ v^{\prime\prime}v^{\prime\prime}}$ and $\widetilde {w^{\prime \prime}w^{\prime \prime}}$ amplification originates from $\widetilde{ u^{\prime \prime}u^{\prime \prime}}$ via the pressure-strain term. The delayed amplification of $\!\widetilde{\ v^{\prime\prime}v^{\prime\prime}}$ is influenced by its production term and energy redistribution, with $\widetilde {w^{\prime \prime}w^{\prime \prime}}$ exhibiting higher spectral consistency with $\widetilde {u^{\prime \prime}u^{\prime \prime}}$ and receiving more energy. In strong interaction, the ‘oblique platform’ serves as a stable dissipation region, formed by increased separation–incident shock distance, characterised by progressively concentrated stress spectra and the transition to large-scale streaks. The downstream ‘secondary amplification’ process resembles the initial amplification near the separation shock foot, driven by intermittent compression waves that strengthen shear instabilities and the deceleration effect. These findings detail the streamwise stress evolution, providing a more comprehensive turbulence amplification mechanism in SWTBLI.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adams, N.A. 1998 Direct numerical simulation of turbulent compression ramp flow. Theor. Comput. Fluid Dyn. 12 (2), 109129.10.1007/s001620050102CrossRefGoogle Scholar
Adams, N.A. 2000 Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Re $_{\theta}$ = 1685. J. Fluid Mech. 420, 4783.CrossRefGoogle Scholar
Andreopoulos, Y., Agui, J.H. & Briassulis, G. 2000 Shock wave—turbulence interactions. Annu. Rev. Fluid Mech. 32 (2000), 309345.10.1146/annurev.fluid.32.1.309CrossRefGoogle Scholar
Aubard, G., Gloerfelt, X. & Robinet, J.C. 2013 Large-eddy simulation of broadband unsteadiness in a shock/Boundary-layer interaction. AIAA J. 51 (10), 23952409.10.2514/1.J052249CrossRefGoogle Scholar
Babinsky, H. & Harvey, J.K. 2011 Shock Wave-Boundary-Layer Interactions. Cambridge University Press.10.1017/CBO9780511842757CrossRefGoogle Scholar
Bernardini, M., Asproulias, I., Larsson, J., Pirozzoli, S. & Grasso, F. 2016 Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions. Phys. Rev. Fluids 1 (8), 084403.CrossRefGoogle Scholar
Bernardini, M., Della Posta, G., Salvadore, F. & Martelli, E. 2023 Unsteadiness characterisation of shock wave/turbulent boundary-layer interaction at moderate Reynolds number. J. Fluid Mech. 954, A43.10.1017/jfm.2022.1038CrossRefGoogle Scholar
Chan, C.I., Schlatter, P. & Chin, R.C. 2021 Interscale transport mechanisms in turbulent boundary layers. J. Fluid Mech. 921, A13.10.1017/jfm.2021.504CrossRefGoogle Scholar
Cho, M., Hwang, Y. & Choi, H. 2018 Scale interactions and spectral energy transfer in turbulent channel flow. J. Fluid Mech. 854, 474504.10.1017/jfm.2018.643CrossRefGoogle Scholar
Clark, T.T. 2020 Two-point evolution equations for incompressible variable density turbulence. arXiv:2011.03345 Google Scholar
Dolling, D.S. 2001 Fifty years of shock-wave/Boundary-layer interaction research: what next? AIAA J. 39 (8), 15171531.10.2514/2.1476CrossRefGoogle Scholar
Dolling, D.S. & Murphy, M.T. 1983 Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA J. 21 (12), 16281634.10.2514/3.60163CrossRefGoogle Scholar
Dupont, P., Piponniau, S. & Dussauge, J.P. 2019 Compressible mixing layer in shock-induced separation. J. Fluid Mech. 863, 620643.10.1017/jfm.2018.987CrossRefGoogle Scholar
Dupont, P., Piponniau, S., Sidorenko, A. & Debiève, J.F. 2008 Investigation by particle image velocimetry measurements of oblique shock reflection with separation. AIAA J. 46 (6), 13651370.10.2514/1.30154CrossRefGoogle Scholar
Délery, J. & Dussauge, J.-P. 2009 Some physical aspects of shock wave/boundary layer interactions. Shock Waves 19 (6), 453468.10.1007/s00193-009-0220-zCrossRefGoogle Scholar
Elsberry, K., Loeffler, J., Zhou, M.D. & Wygnanski, I. 2000 An experimental study of a boundary layer that is maintained on the verge of separation. J. Fluid Mech. 423, 227261.10.1017/S0022112000001828CrossRefGoogle Scholar
Fang, J., Zheltovodov, A.A., Yao, Y., Moulinec, C. & Emerson, D.R. 2020 On the turbulence amplification in shock-wave/turbulent boundary layer interaction. J. Fluid Mech. 897, A32.10.1017/jfm.2020.350CrossRefGoogle Scholar
Farrell, B.F. & Ioannou, P.J. 2012 Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow. J. Fluid Mech. 708, 149196.10.1017/jfm.2012.300CrossRefGoogle Scholar
Gadd, G.E., Holder, D.W., Regan, J.D. & Bullard, E.C. 1954 An experimental investigation of the interaction between shock waves and boundary layers. Proc. R. Soc. Lond. A 226 (1165), 227253.Google Scholar
Gaitonde, D.V. 2015 Progress in shock wave/boundary layer interactions. Prog. Aerosp. Sci. 72, 8099.10.1016/j.paerosci.2014.09.002CrossRefGoogle Scholar
de Giovanetti, M., Sung, H.J. & Hwang, Y. 2017 Streak instability in turbulent channel flow: the seeding mechanism of large-scale motions. J. Fluid Mech. 832, 483513.10.1017/jfm.2017.697CrossRefGoogle Scholar
Gross, A., Little, J. & Fasel, H.F. 2022 Numerical investigation of unswept and swept turbulent shock-wave boundary layer interactions. Aerosp. Sci. Technol. 123, 107455.10.1016/j.ast.2022.107455CrossRefGoogle Scholar
Gungor, T.R., Maciel, Y. & Gungor, A.G. 2022 Energy transfer mechanisms in adverse pressure gradient turbulent boundary layers: production and inter-component redistribution. J. Fluid Mech. 948, A5.10.1017/jfm.2022.679CrossRefGoogle Scholar
Hamilton, J.M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.10.1017/S0022112095000978CrossRefGoogle Scholar
Helm, C.M., Martín, M.P. & Williams, O.J.H. 2021 Characterization of the shear layer in separated shock/turbulent boundary layer interactions. J. Fluid Mech. 912, A7.10.1017/jfm.2020.989CrossRefGoogle Scholar
Huang, W., Wu, H., Yang, Y.-G., Yan, L. & Li, S.-B. 2020 Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows. Acta Astronaut. 174, 103122.10.1016/j.actaastro.2020.05.001CrossRefGoogle Scholar
Hung, F.T., Greenschlag, S.N. & Scottoline, C.A. 1977 Shock-wave-boundary-layer interaction effects on aerodynamic heating. J. Spacecr. Rockets 14 (1), 2531.10.2514/3.57157CrossRefGoogle Scholar
Hwang, Y. & Bengana, Y. 2016 Self-sustaining process of minimal attached eddies in turbulent channel flow. J. Fluid Mech. 795, 708738.10.1017/jfm.2016.226CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010 Self-sustained process at large scales in turbulent channel flow. Phys. Rev. Lett. 105 (4), 044505.10.1103/PhysRevLett.105.044505CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2011 Self-sustained processes in the logarithmic layer of turbulent channel flows. Phys. Fluids 23 (6), 061702.10.1063/1.3599157CrossRefGoogle Scholar
Jiménez, J. 2013 How linear is wall-bounded turbulence? Phys. Fluids 25 (11), 110814.10.1063/1.4819081CrossRefGoogle Scholar
Jiménez, J. 2015 Direct detection of linearized bursts in turbulence. Phys. Fluids 27 (6), 065102.10.1063/1.4921748CrossRefGoogle Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.10.1017/S0022112099005066CrossRefGoogle Scholar
Kang, Y. & Lee, S. 2024 Direct numerical simulation of turbulence amplification in a strong shock-wave/turbulent boundary layer interaction. Phys. Fluids 36 (1), 016127.10.1063/5.0180077CrossRefGoogle Scholar
Kawata, T. & Tsukahara, T. 2021 Scale interactions in turbulent plane couette flows in minimal domains. J. Fluid Mech. 911, A55.10.1017/jfm.2020.1063CrossRefGoogle Scholar
Kim, H.T., Kline, S.J. & Reynolds, W.C. 1971 The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50 (1), 133160.10.1017/S0022112071002490CrossRefGoogle Scholar
Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.10.1017/S0022112067001740CrossRefGoogle Scholar
Kline, S.J. & Runstadler, P.W. 1959 Some preliminary results of visual studies of the flow model of the wall layers of the turbulent boundary layer. J. Appl. Mech. 26 (2), 166170.10.1115/1.4011977CrossRefGoogle Scholar
Laguarda, L., Hickel, S., Schrijer, F.F.J. & van Oudheusden, B.W. 2024 Reynolds number effects in shock-wave/turbulent boundary-layer interactions. J. Fluid Mech. 989, A20.10.1017/jfm.2024.361CrossRefGoogle Scholar
Lee, J.-H. & Sung, H.J. 2009 Structures in turbulent boundary layers subjected to adverse pressure gradients. J. Fluid Mech. 639, 101131.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2019 Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number. J. Fluid Mech. 860, 886938.10.1017/jfm.2018.903CrossRefGoogle Scholar
Li, X., Fu, D. & Ma, Y. 2008 Direct numerical simulation of hypersonic boundary layer transition over a blunt cone. AIAA J. 46 (11), 28992913.10.2514/1.37305CrossRefGoogle Scholar
Li, X.-L., Fu, D.-X., Ma, Y.-W. & Liang, X. 2010 Direct numerical simulation of compressible turbulent flows. Acta Mechanica Sin. 26 (6), 795806.10.1007/s10409-010-0394-8CrossRefGoogle Scholar
Liang, X.& Li, X.L. 2013 DNS of a spatially evolving hypersonic turbulent boundary layer at Mach 8. Sci. China Phys. Mech. Astron. 56 (7), 14081418.10.1007/s11433-013-5102-9CrossRefGoogle Scholar
Longo, J.M.A. 2003 Aerothermodynamics – a critical review at DLR. Aerosp. Sci. Technol. 7 (6), 429438.10.1016/S1270-9638(03)00036-1CrossRefGoogle Scholar
Mansour, N.N., Kim, J. & Moin, P. 1988 Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 1544.CrossRefGoogle Scholar
Moin, P. & Kim, J. 1982 Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341377.10.1017/S0022112082001116CrossRefGoogle Scholar
Panton, R.L. 2001 Overview of the self-sustaining mechanisms of wall turbulence. Prog. Aerosp. Sci. 37 (4), 341383.10.1016/S0376-0421(01)00009-4CrossRefGoogle Scholar
Pasquariello, V., Hickel, S. & Adams, N.A. 2017 Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number. J. Fluid Mech. 823, 617657.10.1017/jfm.2017.308CrossRefGoogle Scholar
Pirozzoli, S. & Bernardini, M. 2011 a Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA J. 49 (6), 13071312.10.2514/1.J050901CrossRefGoogle Scholar
Pirozzoli, S. & Bernardini, M. 2011 b, Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 688, 120168.10.1017/jfm.2011.368CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M. & Grasso, F. 2010 Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J. Fluid Mech. 657, 361393.CrossRefGoogle Scholar
Pirozzoli, S. & Grasso, F. 2006 Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25. Phys. Fluids 18 (6), 065113.10.1063/1.2216989CrossRefGoogle Scholar
Pirozzoli, S., Grasso, F. & Gatski, T.B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25. Phys. Fluids 16 (3), 530545.10.1063/1.1637604CrossRefGoogle Scholar
Priebe, S., Wu, M. & Martín, M.P. 2009 Direct numerical simulation of a reflected-shock-wave/Turbulent-boundary-layer interaction. AIAA J. 47 (5), 11731185.10.2514/1.38821CrossRefGoogle Scholar
Rahgozar, S. & Maciel, Y. 2012 Statistical analysis of low- and high-speed large-scale structures in the outer region of an adverse pressure gradient turbulent boundary layer. J. Turbul. 13, N46.10.1080/14685248.2012.726995CrossRefGoogle Scholar
Ringuette, M., Wu, M. & Martín, M.P. 2008 Low Reynolds number effects in a Mach 3 shock/Turbulent-boundary-layer interaction. AIAA J. 46 (7), 18831886.CrossRefGoogle Scholar
Robinson, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1991), 601639.10.1146/annurev.fl.23.010191.003125CrossRefGoogle Scholar
Sabnis, K. & Babinsky, H. 2023 A review of three-dimensional shock wave–boundary-layer interactions. Prog. Aerosp. Sci. 143, 100953.10.1016/j.paerosci.2023.100953CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.10.1017/S002211200100667XCrossRefGoogle Scholar
Selig, M.S., Andreopoulos, J., Muck, K.C., Dussauge, J.P. & Smits, A.J. 1989 Turbulence structure in a shock wave/turbulent boundary-layer interaction. AIAA J. 27 (7), 862869.10.2514/3.10193CrossRefGoogle Scholar
Shi, J. & Yan, H. 2023 Turbulence amplification in the shock wave/turbulent boundary layer interaction over compression ramp by the flux reconstruction method. Phys. Fluids 35 (1), 016122.10.1063/5.0134222CrossRefGoogle Scholar
Skote, M. & Henningson, D.S. 2002 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 471, 107136.CrossRefGoogle Scholar
Smits, A.J. & Muck, K.-C. 1987 Experimental study of three shock wave/turbulent boundary layer interactions. J. Fluid Mech. 182, 291314.10.1017/S0022112087002349CrossRefGoogle Scholar
Tong, F., Dong, S., Lai, J., Yuan, X. & Li, X. 2022 a Wall shear stress and wall heat flux in a supersonic turbulent boundary layer. Phys. Fluids 34 (1), 015127.CrossRefGoogle Scholar
Tong, F., Lai, J., Duan, J., Dong, S., Yuan, X. & Li, X. 2022 b Effect of interaction strength on recovery downstream of incident shock interactions. Phys. Fluids 34 (12), 125127.10.1063/5.0130596CrossRefGoogle Scholar
Tong, F., Yu, C., Tang, Z. & Li, X. 2017 Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner: turning angle effects. Comput. Fluids 149, 5669.10.1016/j.compfluid.2017.03.009CrossRefGoogle Scholar
Tong, F., Yuan, X., Lai, J., Duan, J., Sun, D. & Dong, S. 2022 c Wall heat flux in a supersonic shock wave/turbulent boundary layer interaction. Phys. Fluids 34 (6), 065104.10.1063/5.0094070CrossRefGoogle Scholar
Vyas, M.A., Yoder, D.A. & Gaitonde, D.V. 2019 Reynolds-stress budgets in an impinging shock-wave/Boundary-layer interaction. AIAA J. 57 (11), 46984714.10.2514/1.J058487CrossRefGoogle Scholar
Wu, G., Wang, Z., Shi, T., Zhang, Z., Jiang, W., Quan, F. & Chang, J. 2024 Effect of expansion waves on cowl shock wave and boundary layer interaction in hypersonic inlet. Propul. Power Res. 13 (1), 8097.10.1016/j.jppr.2024.02.001CrossRefGoogle Scholar
Wu, M. & Martin, M.P. 2007 Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J. 45 (4), 879889.10.2514/1.27021CrossRefGoogle Scholar
Wu, X. & Moin, P. 2010 Transitional and turbulent boundary layer with heat transfer. Phys. Fluids 22 (8), 085105.10.1063/1.3475816CrossRefGoogle Scholar
Xiang, G., Wang, C., Teng, H. & Jiang, Z. 2018 Shock/shock interactions between bodies and wings. Chinese J. Aeronaut. 31 (2), 255261.10.1016/j.cja.2017.11.012CrossRefGoogle Scholar
Yu, M., Dong, S.W., Liu, P.X., Tang, Z.G., Yuan, X.X. & Xu, C.X. 2023 Post-shock turbulence recovery in oblique-shock/turbulent boundary layer interaction flows. J. Fluid Mech. 961, A26.10.1017/jfm.2023.212CrossRefGoogle Scholar
Yu, M., Zhao, M.X., Tang, Z.G., Yuan, X.X. & Xu, C.X. 2022 A spectral inspection for turbulence amplification in oblique shock wave/turbulent boundary layer interaction. J. Fluid Mech. 951, A2.10.1017/jfm.2022.826CrossRefGoogle Scholar
Zhang, X., Jiang, Z., Qin, X., Qu, F. & Yan, C. 2024 A finite difference scale-adaptive TENO scheme for turbulence simulations. J. Comput. Phys. 502, 112793.10.1016/j.jcp.2024.112793CrossRefGoogle Scholar
Zhu, X.-K., Yu, C.-P., Tong, F.-L. & Li, X.-L. 2016 Numerical study on wall temperature effects on shock wave/Turbulent boundary-layer interaction. AIAA J. 55 (1), 131140.10.2514/1.J054939CrossRefGoogle Scholar
Zuo, F.-Y. & Pirozzoli, S. 2024 Recent progress in conical shock wave/boundary layer interaction with spanwise pressure gradient. Propul. Power Res. 13 (3), 295318.10.1016/j.jppr.2024.08.003CrossRefGoogle Scholar