Hostname: page-component-54dcc4c588-sq2k7 Total loading time: 0 Render date: 2025-10-02T06:22:05.929Z Has data issue: false hasContentIssue false

Suppressed cascade efficiency by Hall effects in magnetohydrodynamic turbulence

Published online by Cambridge University Press:  19 September 2025

Running Hu
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing 100094, PR China LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
Jin-Han Xie
Affiliation:
Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, PR China State Key Laboratory of Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, PR China
Jianchun Wang
Affiliation:
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
Xinliang Li
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
Jian Fang*
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
Yuan Hu*
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
Changping Yu*
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
*
Corresponding authors: Jian Fang, jianfang@imech.ac.cn; Yuan Hu, yhu@imech.ac.cn; Changping Yu, cpyu@imech.ac.cn
Corresponding authors: Jian Fang, jianfang@imech.ac.cn; Yuan Hu, yhu@imech.ac.cn; Changping Yu, cpyu@imech.ac.cn
Corresponding authors: Jian Fang, jianfang@imech.ac.cn; Yuan Hu, yhu@imech.ac.cn; Changping Yu, cpyu@imech.ac.cn

Abstract

Magnetohydrodynamic turbulence with Hall effects is ubiquitous in heliophysics and plasma physics. Direct numerical simulations reveal that, when the forcing scale is comparable to the ion inertial scale, the Hall effects induce remarkable cross-helicity. It then suppresses the cascade efficiency, leading to the accumulation of large-scale magnetic energy and helicity. The process is accompanied by the disruption of current sheets through the entrainment by vortex tubes or the excitation of whistler waves. Using the solar wind data from the Parker Solar Probe, the numerical findings are separately confirmed. These findings provide new insights into the emergence of large-scale solar wind turbulence driven by helical fields and Hall effects.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alexakis, A. 2013 Large-scale magnetic fields in magnetohydrodynamic turbulence. Phys. Rev. Lett. 110, 084502.CrossRefGoogle ScholarPubMed
Alexakis, A. 2017 Helically decomposed turbulence. J. Fluid Mech. 812, 752770.CrossRefGoogle Scholar
Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767–769, 1101.Google Scholar
Aluie, H. 2017 Coarse-grained incompressible magnetohydrodynamics: analyzing the turbulent cascades. New J. Phys. 19, 025008.10.1088/1367-2630/aa5d2fCrossRefGoogle Scholar
Aluie, H. & Eyink, G.L. 2010 Scale locality of magnetohydrodynamic turbulence. Phys. Rev. Lett. 104, 081101.CrossRefGoogle ScholarPubMed
Bale, S.D., et al. 2016 The FIELDS instrument suite for solar probe plus. Space Sci. Rev. 204, 4982.10.1007/s11214-016-0244-5CrossRefGoogle ScholarPubMed
Bandyopadhyay, R., et al. 2018 Solar wind turbulence studies using MMS fast plasma investigation data. Astrophys. J. 866, 81.10.3847/1538-4357/aade93CrossRefGoogle Scholar
Bandyopadhyay, R., et al. 2020 Enhanced energy transfer rate in solar wind turbulence observed near the sun from parker solar probe. Astrophys. J. Suppl. Ser. 246, 48.CrossRefGoogle Scholar
Banerjee, S. & Galtier, S. 2016 a An alternative formulation for exact scaling relations in hydrodynamic and magnetohydrodynamic turbulence. J. Phys. A: Math. Theor. 50, 015501.10.1088/1751-8113/50/1/015501CrossRefGoogle Scholar
Banerjee, S. & Galtier, S. 2016 b Chiral exact relations for helicities in Hall magnetohydrodynamic turbulence. Phys. Rev. E 93, 033120.10.1103/PhysRevE.93.033120CrossRefGoogle ScholarPubMed
Beresnyak, A. 2018 The rate of three-dimensional Hall-MHD reconnection. J. Phys.: Conf. Ser. 1031, 012001.Google Scholar
Bhattacharjee, A. 2004 Impulsive magnetic reconnection in the earth’s magnetotail and the solar corona. Annu. Rev. Astron. Astrophys. 42, 365384.10.1146/annurev.astro.42.053102.134039CrossRefGoogle Scholar
Bian, X. & Aluie, H. 2019 Decoupled cascades of kinetic and magnetic energy in magnetohydrodynamic turbulence. Phys. Rev. Lett. 122, 135101.CrossRefGoogle ScholarPubMed
Biferale, L., Musacchio, S. & Toschi, F. 2012 Inverse energy cascade in three-dimensional isotropic turbulence. Phys. Rev. Lett. 108, 164501.CrossRefGoogle ScholarPubMed
Biferale, L., Musacchio, S. & Toschi, F. 2013 Split energy–helicity cascades in three-dimensional homogeneous and isotropic turbulence. J. Fluid Mech. 730, 309327.CrossRefGoogle Scholar
Boldyrev, S. 2005 On the spectrum of magnetohydrodynamic turbulence. Astrophys. J. 626, L37.CrossRefGoogle Scholar
Boldyrev, S. 2006 Spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 96, 115002.10.1103/PhysRevLett.96.115002CrossRefGoogle ScholarPubMed
Brodiano, M., Dmitruk, P. & Andrés, N. 2023 A statistical study of the compressible energy cascade rate in solar wind turbulence: Parker solar probe observations. Phys. Plasmas 30, 032903.10.1063/5.0109379CrossRefGoogle Scholar
Bruno, R., Carbone, V., Chapman, S., Hnat, B., Noullez, A. & Sorriso-Valvo, L. 2007 Intermittent character of interplanetary magnetic field fluctuations. Phys. Plasmas 14, 032901.10.1063/1.2711429CrossRefGoogle Scholar
Bruno, R., Carbone, V., Primavera, L., Malara, F., Sorriso-Valvo, L., Bavassano, B. & Veltri, P. 2004 On the probability distribution function of small-scale interplanetary magnetic field fluctuations. Ann. Geophys. 22, 37513769.10.5194/angeo-22-3751-2004CrossRefGoogle Scholar
Buzzicotti, M., Aluie, H., Biferale, L. & Linkmann, M. 2018 Energy transfer in turbulence under rotation. Phys. Rev. Fluids 3, 034802.CrossRefGoogle Scholar
Camporeale, E., Sorriso-Valvo, L., Califano, F. & Retinò, A. 2018 Coherent structures and spectral energy transfer in turbulent plasma: a space-filter approach. Phys. Rev. Lett. 120, 125101.CrossRefGoogle ScholarPubMed
Case, A.W., et al. 2020 The solar probe cup on the parker solar probe. Astrophys. J. Suppl. Ser. 246, 4354.CrossRefGoogle Scholar
Chandran, B.D.G., Schekochihin, A.A. & Mallet, A. 2015 Intermittency and alignment in strong RMHD turbulence. Astrophys. J. 807, 3954.CrossRefGoogle Scholar
Chen, C.H.K., et al. 2020 The evolution and role of solar wind turbulence in the inner heliosphere. Astrophys. J. Suppl. Ser. 246, 5362.CrossRefGoogle Scholar
Chen, Q., Chen, S. & Eyink, G.L. 2003 The joint cascade of energy and helicity in three-dimensional turbulence. Phys. Fluids 15, 361374.10.1063/1.1533070CrossRefGoogle Scholar
De Karman, T. & Howarth, L. 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A: Math. Phys. Sci. 164, 192215,10.1098/rspa.1938.0013CrossRefGoogle Scholar
Dorelli, J.C., Glocer, A., Collinson, G. & Tóth, G. 2015, The role of the Hall effect in the global structure and dynamics of planetary magnetospheres: Ganymede as a case study. J. Geophys. Res.: Space Phys. 120, 53775392.10.1002/2014JA020951CrossRefGoogle Scholar
Ebrahimi, F. & Raman, R. 2015 Plasmoids formation during simulations of coaxial helicity injection in the national spherical torus experiment. Phys. Rev. Lett. 114, 205003.10.1103/PhysRevLett.114.205003CrossRefGoogle ScholarPubMed
Elsasser, W.M. 1956 Hydromagnetic dynamo theory. Rev. Mod. Phys. 28, 135163.10.1103/RevModPhys.28.135CrossRefGoogle Scholar
Faganello, M., Califano, F. & Pegoraro, F. 2008 Time window for magnetic reconnection in plasma configurations with velocity shear. Phys. Rev. Lett. 101, 175003.10.1103/PhysRevLett.101.175003CrossRefGoogle ScholarPubMed
Ferrand, R., Galtier, S., Sahraoui, F., Meyrand, R., Andrés, N. & Banerjee, S. 2019 On exact laws in incompressible hall magnetohydrodynamic turbulence. Astrophys. J. 881, 5055.10.3847/1538-4357/ab2be9CrossRefGoogle Scholar
Fox, N.J., et al. 2016 The solar probe plus mission: humanity’s first visit to our star. Space Sci. Rev. 204, 748.10.1007/s11214-015-0211-6CrossRefGoogle Scholar
Frisch, U., Pouquet, A., Léorat, J. & Mazure, A. 1975 Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. J. Fluid Mech. 68, 769778.10.1017/S002211207500122XCrossRefGoogle Scholar
Galtier, S. 2006 Wave turbulence in incompressible Hall magnetohydrodynamics. J. Plasma Phys. 72, 721769.10.1017/S0022377806004521CrossRefGoogle Scholar
Galtier, S. 2008 von Kármán–Howarth equations for Hall magnetohydrodynamic flows. Phys. Rev. E 77, 015302.CrossRefGoogle ScholarPubMed
Galtier, S. 2016 Introduction to Modern Magnetohydrodynamics. Cambridge University Press.10.1017/CBO9781316665961CrossRefGoogle Scholar
Gary, S.P. & Smith, C.W. 2009 Short‐wavelength turbulence in the solar wind: Linear theory of whistler and kinetic Alfvén fluctuations. J. Geophys. Res.: Space Phys. 114, 2009JA014525.10.1029/2009JA014525CrossRefGoogle Scholar
Goldreich, P. & Sridhar, S. 1997 Magnetohydrodynamic turbulence revisited. Astrophys. J. 485, 680688.10.1086/304442CrossRefGoogle Scholar
Greco, A., Matthaeus, W.H., Servidio, S., Chuychai, P. & Dmitruk, P. 2009 Statistical analysis of discontinuities in solar wind ace data and comparison with intermittent mhd turbulence. Astrophys. J. Lett. 691, L111L114.10.1088/0004-637X/691/2/L111CrossRefGoogle Scholar
Hellinger, P., Verdini, A., Landi, S., Franci, L. & Matteini, L. 2018 von kármán–Howarth equation for hall magnetohydrodynamics: hybrid simulations. Astrophys. J. Lett. 857, L19L23.10.3847/2041-8213/aabc06CrossRefGoogle Scholar
Hu, R., Li, X. & Yu, C. 2022 Transfers of energy and helicity in helical rotating turbulence. J. Fluid Mech. 946, A19.10.1017/jfm.2022.580CrossRefGoogle Scholar
Kiyani, K.H., Chapman, S.C., Khotyaintsev, Yu V., Dunlop, M.W. & Sahraoui, F. 2009 Global scale-invariant dissipation in collisionless plasma turbulence. Phys. Rev. Lett. 103, 075006.10.1103/PhysRevLett.103.075006CrossRefGoogle ScholarPubMed
Kolmogorov, A.N. 1941 Dokl. Akad. Nauk SSSR 30, 299303.Google Scholar
Kuzzay, D., Alexandrova, O. & Matteini, L. 2019 Local approach to the study of energy transfers in incompressible magnetohydrodynamic turbulence. Phys. Rev. E 99, 053202.10.1103/PhysRevE.99.053202CrossRefGoogle Scholar
Linkmann, M. & Dallas, V. 2017 Triad interactions and the bidirectional turbulent cascade of magnetic helicity. Phys. Rev. Fluids 2, 054605.10.1103/PhysRevFluids.2.054605CrossRefGoogle Scholar
Manzini, D., Sahraoui, F., Califano, F. & Ferrand, R. 2022 Local energy transfer and dissipation in incompressible Hall magnetohydrodynamic turbulence: the coarse-graining approach. Phys. Rev. E 106, 035202.10.1103/PhysRevE.106.035202CrossRefGoogle ScholarPubMed
Marchand, P., Tomida, K., Commerçon, B. & Chabrier, G. 2019 Impact of the Hall effect in star formation, improving the angular momentum conservation. Astron. Astrophys. 631 , A66.10.1051/0004-6361/201936215CrossRefGoogle Scholar
Marino, R. & Sorriso-Valvo, L. 2023 Scaling laws for the energy transfer in space plasma turbulence. Phys. Rep. 1006, 1144.CrossRefGoogle Scholar
Marino, R., Sorriso-Valvo, L., Carbone, V., Veltri, P., Noullez, A. & Bruno, R. 2011 The magnetohydrodynamic turbulent cascade in the ecliptic solar wind: study of Ulysses data. Planet. Space Sci. 59, 592597.10.1016/j.pss.2010.06.005CrossRefGoogle Scholar
Marino, R., Sorriso-Valvo, L., D’Amicis, R., Carbone, V., Bruno, R. & Veltri, P. 2012 On the occurrence of the third-order scaling in high latitude solar wind. Astrophys. J. 750, 4148.10.1088/0004-637X/750/1/41CrossRefGoogle Scholar
Martin, L.N., De Vita, G., Sorriso-Valvo, L., Dmitruk, P., Nigro, G., Primavera, L.Carbone, V. 2013 Cancellation properties in Hall magnetohydrodynamics with a strong guide magnetic field. Phys. Rev. E 88, 063107.CrossRefGoogle Scholar
Mason, J., Cattaneo, F. & Boldyrev, S. 2008 Numerical measurements of the spectrum in magnetohydrodynamic turbulence. Phys. Rev. E 77, 036403.10.1103/PhysRevE.77.036403CrossRefGoogle ScholarPubMed
Matthaeus, W.H. & Goldstein, M.L. 1982 Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind. J. Geophys. Res.: Space Phys. 87, 60116028.CrossRefGoogle Scholar
Milanese, L.M., Loureiro, N.F. & Boldyrev, S. 2021 Dynamic phase alignment in Navier–Stokes turbulence. Phys. Rev. Lett. 127, 274501.10.1103/PhysRevLett.127.274501CrossRefGoogle ScholarPubMed
Mininni, P.D., Gomez, D.O. & Mahajan, S.M. 2005 Direct simulations of helical Hall-MHD turbulence and dynamo action. Astrophys. J. 619, 1019.10.1086/426534CrossRefGoogle Scholar
Miura, H. 2024 Formation of fine structures in incompressible hall magnetohydrodynamic turbulence simulations. Plasma 7, 793815.CrossRefGoogle Scholar
Miura, H. & Araki, K. 2014 Structure transitions induced by the Hall term in homogeneous and isotropic magnetohydrodynamic turbulence. Phys. Plasmas 21, 072313.10.1063/1.4890857CrossRefGoogle Scholar
Müller, W.-C., Malapaka, S.K. & Busse, A. 2012 Inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. Phys. Rev. E 85, 015302.CrossRefGoogle ScholarPubMed
Osman, K.T., Matthaeus, W.H., Wan, M. & Rappazzo, A.F. 2012 Intermittency and local heating in the solar wind. Phys. Rev. Lett. 108, 261102.10.1103/PhysRevLett.108.261102CrossRefGoogle ScholarPubMed
Osman, K.T., Wan, M., Matthaeus, W.H., Breech, B. & Oughton, S. 2011 Directional alignment and non-Gaussian statistics in solar wind turbulence. Astrophys. J. 741, 7579.10.1088/0004-637X/741/2/75CrossRefGoogle Scholar
Perez, J.C., Mason, J., Boldyrev, S. & Cattaneo, F. 2012 On the energy spectrum of strong magnetohydrodynamic turbulence. Phys. Rev. X 2, 041005.Google Scholar
Plunian, F., Teimurazov, A., Stepanov, R. & Verma, M.K. 2020 Inverse cascade of energy in helical turbulence. J. Fluid Mech. 895, A13.10.1017/jfm.2020.307CrossRefGoogle Scholar
Podesta, J.J., Roberts, D.A. & Goldstein, M.L. 2007 Spectral exponents of kinetic and magnetic energy spectra in solar wind turbulence. Astrophys. J. 664, 543.10.1086/519211CrossRefGoogle Scholar
Politano, H., Gomez, T. & Pouquet, A. 2003 von Kármán–Howarth relationship for helical magnetohydrodynamic flows. Phys. Rev. E 68, 026315.10.1103/PhysRevE.68.026315CrossRefGoogle ScholarPubMed
Politano, H. & Pouquet, A. 1998 Dynamical length scales for turbulent magnetized flows. Geophys. Res. Lett. 25, 273276.10.1029/97GL03642CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Pouquet, A., Rosenberg, D., Stawarz, Je & Marino, R. 2019 Helicity dynamics, inverse, and bidirectional cascades in fluid and magnetohydrodynamic turbulence: a brief review. Earth Space Sci. 6, 351369.10.1029/2018EA000432CrossRefGoogle Scholar
Raouafi, N.E., et al. 2023 Parker solar probe: four years of discoveries at solar cycle minimum. Space Sci. Rev. 219, 8.10.1007/s11214-023-00952-4CrossRefGoogle Scholar
Richner, N.J., Bodner, G.M., Bongard, M.W., Fonck, R.J., Nornberg, M.D. & Reusch, J.A. 2022 Magnetic turbulence and current drive during local helicity injection. Phys. Rev. Lett. 128, 105001.10.1103/PhysRevLett.128.105001CrossRefGoogle ScholarPubMed
Sahoo, G. & Biferale, L. 2015 Disentangling the triadic interactions in Navier–Stokes equations. Eur. Phys. J. E 38, 18.10.1140/epje/i2015-15114-4CrossRefGoogle ScholarPubMed
Salem, C., Mangeney, A., Bale, S.D. & Veltri, P. 2009 Solar wind magnetohydrodynamics turbulence: anomalous scaling and role of intermittency. Astrophys. J. 702, 537553.10.1088/0004-637X/702/1/537CrossRefGoogle Scholar
Schekochihin, A.A. 2022 MHD turbulence: a biased review. J. Plasma Phys. 88, 155880501.10.1017/S0022377822000721CrossRefGoogle Scholar
Servidio, S., Matthaeus, W.H., Shay, M.A., Cassak, P.A. & Dmitruk, P. 2009 Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett. 102, 115003.10.1103/PhysRevLett.102.115003CrossRefGoogle ScholarPubMed
Smith, C.W., Stawarz, J.E., Vasquez, B.J., Forman, M.A. & MacBride, B.T. 2009 Turbulent cascade at 1 AU in high cross-helicity flows. Phys. Rev. Lett. 103, 201101.10.1103/PhysRevLett.103.201101CrossRefGoogle Scholar
Sorriso-Valvo, L., Marino, R., Carbone, V., Noullez, A., Lepreti, F., Veltri, P., Bruno, R., Bavassano, B. & Pietropaolo, E. 2007 Observation of inertial energy cascade in interplanetary space plasma. Phys. Rev. Lett. 99, 115001.CrossRefGoogle ScholarPubMed
Sorriso-Valvo, L., Marino, R., Lijoi, L., Perri, S. & Carbone, V. 2015 Self-consistent castaing distribution of solar wind turbulent fluctuations. Astrophys. J. 807, 8692.CrossRefGoogle Scholar
Sun, H., Yang, Y., Lu, Q., Lu, S., Wan, M. & Wang, R. 2022 Physical regimes of two-dimensional mhd turbulent reconnection in different lundquist numbers. Astrophys. J. 926, 97110.CrossRefGoogle Scholar
Taylor, G.I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A: Math. Phys. Sci. 164, 476490.CrossRefGoogle Scholar
Veltri, P. & Mangeney, A. 1999 Scaling laws and intermittent structures in solar wind MHD turbulence. AIP Conf. Proc. 471, 543546.10.1063/1.58809CrossRefGoogle Scholar
Wan, M., Matthaeus, W.H., Roytershteyn, V., Karimabadi, H., Parashar, T., Wu, P.Shay, M. 2015 Intermittent dissipation and heating in 3D kinetic plasma turbulence. Phys. Rev. Lett. 114, 175002.10.1103/PhysRevLett.114.175002CrossRefGoogle ScholarPubMed
Wang, Y. & Chkhetiani, O. 2023 Four-thirds law of energy and magnetic helicity in electron and Hall magnetohydrodynamic fluids. Physica D: Nonlinear Phenom. 454, 133835.10.1016/j.physd.2023.133835CrossRefGoogle Scholar
Woltjer, L. 1958 A theorem on force-free magnetic fields. Proc. Natl Acad. Sci. USA 44, 489491.10.1073/pnas.44.6.489CrossRefGoogle ScholarPubMed
Wurster, J., Bate, M.R. & Bonnell, I.A. 2021 The impact of non-ideal magnetohydrodynamic processes on discs, outflows, counter-rotation, and magnetic walls during the early stages of star formation. Mon. Not. R. Astron. Soc. 507, 23542372.10.1093/mnras/stab2296CrossRefGoogle Scholar
Xie, J.-H. & Bühler, O. 2019 Third-order structure functions for isotropic turbulence with bidirectional energy transfer. J. Fluid Mech. 877, R3.CrossRefGoogle Scholar
Yadav, S.K., Miura, H. & Pandit, R. 2022 Statistical properties of three-dimensional Hall magnetohydrodynamics turbulence. Phys. Fluids 34, 095135.10.1063/5.0107434CrossRefGoogle Scholar
Yan, Z., Li, X., Yu, C., Wang, J. & Chen, S. 2020 Dual channels of helicity cascade in turbulent flows. J. Fluid Mech. 894, R2.10.1017/jfm.2020.289CrossRefGoogle Scholar