Hostname: page-component-54dcc4c588-b5cpw Total loading time: 0 Render date: 2025-10-02T08:33:49.768Z Has data issue: false hasContentIssue false

A refined strong Reynolds analogy: perspectives from the transport of velocity and temperature fluctuations

Published online by Cambridge University Press:  15 September 2025

Zhikang Huang
Affiliation:
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
Hongmin Su*
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
Qilong Guo
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
Xianxu Yuan
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
Xue-Lu Xiong
Affiliation:
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
Yi Zhou*
Affiliation:
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
*
Corresponding authors: Hongmin Su, suhongmin@cardc.cn; Yi Zhou, yizhou@njust.edu.cn
Corresponding authors: Hongmin Su, suhongmin@cardc.cn; Yi Zhou, yizhou@njust.edu.cn

Abstract

In compressible turbulent boundary layers (CTBLs), the strong Reynolds analogy (SRA) refers to a set of quantitative relationships between temperature and velocity fluctuations. The essence of the SRA is the linear relationship between these fluctuations in large-scale motions. We investigate the transport processes of the second-order statistical moments associated with temperature and velocity fluctuations to reveal the physical mechanisms underlying this linear correlation. An important finding is that there exists a strong linear mechanism between the turbulent production of velocity and temperature fluctuations. Nonlinear mechanisms, such as the viscous-thermal dissipation, the work contribution, and particularly the pressure term, lead to the failure of the existing SRAs in the outer layer. Based on the above findings, a refined SRA (RSRA) is proposed, which better describes the quantitative relation between the temperature and velocity fluctuation intensities. An approximate expression for the turbulent Prandtl number under different Mach numbers and wall-cooling conditions is derived with the newly proposed RSRA. The relations proposed in this paper are validated through the direct numerical simulation data of flat-plate zero-pressure-gradient CTBLs at different Mach numbers and wall temperatures.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abe, H. & Antonia, R.A. 2017 Relationship between the heat transfer law and the scalar dissipation function in a turbulent channel flow. J. Fluid Mech. 830, 300325.Google Scholar
Bernardini, M., Modesti, D., Salvadore, F. & Pirozzoli, S. 2021 STREAmS: a high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows. Comput. Phys. Commun. 263, 107906.Google Scholar
Cebeci, T. 1973 A model for eddy conductivity and turbulent Prandtl number. J. Heat Transfer 95 (2), 227234.CrossRefGoogle Scholar
Chen, X., Cheng, C., Gan, J. & Fu, L. 2023 Study of the linear models in estimating coherent velocity and temperature structures for compressible turbulent channel flows. J. Fluid Mech. 973, A36.Google Scholar
Cheng, C. & Fu, L. 2023 Linear-model-based study of the coupling between velocity and temperature fields in compressible turbulent channel flows. J. Fluid Mech. 964, A15.10.1017/jfm.2023.356CrossRefGoogle Scholar
Cheng, C. & Fu, L. 2024 a Mean temperature scalings in compressible wall turbulence. Phys. Rev. Fluids 9 (5), 054610.10.1103/PhysRevFluids.9.054610CrossRefGoogle Scholar
Cheng, C. & Fu, L. 2024 b On the streamwise velocity, temperature and passive scalar fields in compressible turbulent channel flows: a viewpoint from multiphysics couplings. J. Fluid Mech. 983, A38.Google Scholar
Cheng, C. & Fu, L. 2024 c A Reynolds analogy model for compressible wall turbulence. J. Fluid Mech. 999, A20.Google Scholar
Cogo, M., Baù, U., Chinappi, M., Bernardini, M. & Picano, F. 2023 Assessment of heat transfer and Mach number effects on high-speed turbulent boundary layers. J. Fluid Mech. 974, A10.10.1017/jfm.2023.791CrossRefGoogle Scholar
Cogo, M., Salvadore, F., Picano, F. & Bernardini, M. 2022 Direct numerical simulation of supersonic and hypersonic turbulent boundary layers at moderate-high Reynolds numbers and isothermal wall condition. J. Fluid Mech. 945, A30.10.1017/jfm.2022.574CrossRefGoogle Scholar
Del Álamo, J.C. & Jiménez, J. 2003 Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15 (6), L41L44.Google Scholar
Di Renzo, M.P. & Urzay, J. 2021 Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies. J. Fluid Mech. 912, A29.Google Scholar
Duan, L., Beekman, I. & Martin, M.P. 2010 Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419445.Google Scholar
Duan, L., Beekman, I. & Martin, M.P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech. 672, 245267.Google Scholar
Duan, L. & Martin, M.P. 2011 a Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy. J. Fluid Mech. 684, 2559.Google Scholar
Duan, L. & Martin, M.P. 2011 b Effective approach for estimating turbulence–chemistry interaction in hypersonic turbulent boundary layers. AIAA J. 49 (10), 22392247.10.2514/1.J051034CrossRefGoogle Scholar
Fan, Y., Kozul, M., Li, W. & Sandberg, R.D. 2024 Correlations between wall heat flux and Reynolds shear stress/turbulent heat flux in compressible turbulent boundary layers. J. Fluid Mech. 999, A52.Google Scholar
Fan, Y. & Li, W. 2023 Spectral analysis of turbulence kinetic and internal energy budgets in hypersonic turbulent boundary layers. Phys. Rev. Fluids 8, 044604.Google Scholar
Gatski, T.B. & Bonnet, J.P. 2013 Compressibility, Turbulence and High Speed Flow. Academic Press.Google Scholar
Gaviglio, J. 1987 Reynolds analogies and experimental study of heat transfer in the supersonic boundary layer. Intl J. Heat Mass Transfer 30 (5), 911926.Google Scholar
Gerolymos, G.A. & Vallet, I. 2014 Pressure, density, temperature and entropy fluctuations in compressible turbulent plane channel flow. J. Fluid Mech. 757, 701746.CrossRefGoogle Scholar
Gerolymos, G.A. & Vallet, I. 2024 Total and static temperature statistics in compressible turbulent plane channel flow. J. Fluid Mech. 978, A25.Google Scholar
Gibis, T., Sciacovelli, L., Kloker, M. & Wenzel, C. 2024 Heat-transfer effects in compressible turbulent boundary layers – a regime diagram. J. Fluid Mech. 995, A14.10.1017/jfm.2024.622CrossRefGoogle Scholar
Guarini, S.E., Moser, R.D., Shariff, K. & Wray, A. 2000 Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech. 414, 133.10.1017/S0022112000008466CrossRefGoogle Scholar
Hasan, A.M., Costa, P., Larsson, J., Pirozzoli, S. & Pecnik, R. 2025 Intrinsic compressibility effects in near-wall turbulence. J. Fluid Mech. 1006, A14.CrossRefGoogle Scholar
Huang, J., Duan, L. & Choudhari, M.M. 2022 Direct numerical simulation of hypersonic turbulent boundary layers: effect of spatial evolution and Reynolds number. J. Fluid Mech. 937, A3.10.1017/jfm.2022.80CrossRefGoogle Scholar
Huang, P.G., Coleman, G.N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.Google Scholar
Huang, P.G., Coleman, G.N., Spalart, P.R. & Yang, X.I.A. 2023 Velocity and temperature scalings leading to compressible laws of the wall. J. Fluid Mech. 977, A49.Google Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Kawamura, H., Abe, H. & Matsuo, Y. 1999 DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects. Intl J. Heat Fluid Flow 20 (3), 196207.Google Scholar
Kawamura, H., Ohsaka, K., Abe, H. & Yamamoto, K. 1998 DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid. Intl J. Heat Fluid Flow 19 (5), 482491.Google Scholar
Kawata, T. & Tsukahara, T. 2022 Spectral analysis on transport budgets of turbulent heat fluxes in plane couette turbulence. Energies 15 (14), 5258.10.3390/en15145258CrossRefGoogle Scholar
Klein, M., Sadiki, A. & Janicka, J. 2003 A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186 (2), 652665.10.1016/S0021-9991(03)00090-1CrossRefGoogle Scholar
Martin, M.P. 2007 Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments. J. Fluid Mech. 570, 347364.CrossRefGoogle Scholar
Morkovin, M.V. 1962 Effects of compressibility on turbulent flows. Méc. Turbul. 367 (380), 26.Google Scholar
Musker, A.J. 1979 Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer. AIAA J. 17 (6), 655657.10.2514/3.61193CrossRefGoogle Scholar
Passiatore, D., Sciacovelli, L., Cinnella, P. & Pascazio, G. 2022 Thermochemical non-equilibrium effects in turbulent hypersonic boundary layers. J. Fluid Mech. 941, A21.10.1017/jfm.2022.283CrossRefGoogle Scholar
Pirozzoli, S. & Bernardini, M. 2011 Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 688, 120168.10.1017/jfm.2011.368CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M. & Orlandi, P. 2016 Passive scalars in turbulent channel flow at high Reynolds number. J. Fluid Mech. 788, 614639.10.1017/jfm.2015.711CrossRefGoogle Scholar
Pirozzoli, S., Grasso, F. & Gatski, T.B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25. Phys. Fluids 16 (3), 530545.10.1063/1.1637604CrossRefGoogle Scholar
Sciacovelli, L., Cinnella, P. & Gloerfelt, X. 2018 A priori tests of rans models for turbulent channel flows of a dense gas. Flow Turbul. Combust. 101 (2), 295315.10.1007/s10494-018-9938-yCrossRefGoogle Scholar
Xu, D., Wang, J. & Chen, S. 2023 Reynolds number and wall cooling effects on correlations between the thermodynamic variables in hypersonic turbulent boundary layers. J. Fluid Mech. 965, A4.Google Scholar
Yu, M., Dong, S., Guo, Q., Tang, Z., Yuan, X. & Xu, C. 2024 a Characterization of very-large-scale motions in supersonic and hypersonic turbulent boundary layers. J. Fluid Mech. 980, A8.10.1017/jfm.2023.1078CrossRefGoogle Scholar
Yu, M. & Xu, C. 2021 Compressibility effects on hypersonic turbulent channel flow with cold walls. Phys. Fluids 33 (7), 075106.Google Scholar
Yu, M., Zhao, L., Yuan, X. & Xu, C. 2024 b Transport of inertial spherical particles in compressible turbulent boundary layers. J. Fluid Mech. 990, A5.10.1017/jfm.2024.507CrossRefGoogle Scholar
Yu, M., Zhou, Q., Dong, S., Yuan, X. & Xu, C. 2023 Compressibility effects in supersonic and hypersonic turbulent boundary layers subject to wall disturbances. J. Fluid Mech. 972, A32.10.1017/jfm.2023.712CrossRefGoogle Scholar
Zhang, C., Duan, L. & Choudhari, M.M. 2017 Effect of wall cooling on boundary-layer-induced pressure fluctuations at Mach 6. J. Fluid Mech. 822, 530.10.1017/jfm.2017.212CrossRefGoogle Scholar
Zhang, C., Duan, L. & Choudhari, M.M. 2018 Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers. AIAA J. 56 (11), 42974311.10.2514/1.J057296CrossRefGoogle Scholar
Zhang, Y.S., Bi, W.T., Hussain, F. & She, Z.S. 2013 A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392420.10.1017/jfm.2013.620CrossRefGoogle Scholar
Supplementary material: File

Huang et al. supplementary material

Huang et al. supplementary material
Download Huang et al. supplementary material(File)
File 388.7 KB