Hostname: page-component-54dcc4c588-b5cpw Total loading time: 0 Render date: 2025-10-08T05:00:25.388Z Has data issue: false hasContentIssue false

Refined Reynolds analogy for particle-laden compressible turbulent channel flow

Published online by Cambridge University Press:  06 October 2025

Yucang Ruan
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, School of Mechanics and Engineering Science, Peking University, Beijing 100871, PR China
Zuoli Xiao*
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, School of Mechanics and Engineering Science, Peking University, Beijing 100871, PR China HEDPS and Center for Applied Physics and Technology, School of Mechanics and Engineering Science, Peking University, Beijing 100871, PR China Nanchang Innovation Institute, Peking University, Nanchang 330008, PR China
*
Corresponding author: Zuoli Xiao, z.xiao@pku.edu.cn

Abstract

The Reynolds analogy is revisited and the van Driest equation is established for fully developed particle-laden compressible turbulent channel flow (CTCF). A correction function is introduced into the classical approximate solution of the van Driest equation based on numerical observations. The refined Reynolds analogy is validated in both single-phase and particle-laden CTCFs. The newly proposed mean temperature–velocity relation agrees very well with numerical results. The turbulence modulation caused by inertial particles in CTCF is also studied through two-way coupling point-particle direct numerical simulation. Similar to its incompressible counterpart, the mean velocity of background flow is unchanged in the presence of inertial particles. However, it is discovered that the mean temperature of background flow is attenuated due to the interplay between carrier flow and adiabatic particles. The temperature attenuation rate (TAR) is employed to describe this phenomenon, which is defined as the integral of mean temperature profile with respect to mean velocity normalized by the product of wall temperature and central mean velocity. The numerical results manifest that the inertial particles can cause considerable temperature attenuation across the channel. It is further found that the Reynolds analogy and recovery factors are reduced by inertial particles. The refined Reynolds analogy can reproduce the TAR obtained from numerical simulations. In addition, the energy transfer analysis reveals that the temperature attenuation caused by the motion of adiabatic particles is mainly attributed to the suppression of turbulent dissipation.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Armenio, V. & Fiorotto, V. 2001 The importance of the forces acting on particles in turbulent flows. Phys. Fluids 13 (8), 24372440.10.1063/1.1385390CrossRefGoogle Scholar
Balachandar, S. 2009 A scaling analysis for point-particle approaches to turbulent multiphase flows. Intl J. Multiphase Flow 35, 801810.10.1016/j.ijmultiphaseflow.2009.02.013CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.10.1146/annurev.fluid.010908.165243CrossRefGoogle Scholar
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2014 Velocity statistics in turbulent channel flow up to re τ = 4000. J. Fluid Mech. 742, 171191.10.1017/jfm.2013.674CrossRefGoogle Scholar
Blasius, H. 1908 Grenzschichten in flüssigkeiten mit kleiner reibung. Z. Math. Phys. 56, 137.Google Scholar
Brand, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54, 159189.10.1146/annurev-fluid-030121-021103CrossRefGoogle Scholar
Busemann, A. 1931 Handbuch Der Experimentalphysik. vol. 4. Geest und Portig.Google Scholar
Capecelatro, J. & Wagner, J.L. 2024 Gas-particle dynamics in high-speed flows. Annu. Rev. Fluid Mech. 56, 379403.10.1146/annurev-fluid-121021-015818CrossRefGoogle Scholar
Clift, R. & Gauvin, W.H. 1971 The motion of entrained particles in gas streams. Canadian J. Chem. Engng 49 (4), 439448.10.1002/cjce.5450490403CrossRefGoogle Scholar
Coleman, G.N., Kim, J. & Moser, R.D. 1995 A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159183.10.1017/S0022112095004587CrossRefGoogle Scholar
Crocco, L. 1932 Sulla trasmissione del calore da una lamina piana a un fluido scorrente ad alta velocita. L. Aerotecnica 12, 181197.Google Scholar
Crowe, C.T., Sharma, M.P. & Stock, D.E. 1988 The particle-source-in cell (psi-cell) model for gas-droplet flows. J. Fluids Engng 99 (2), 325332.10.1115/1.3448756CrossRefGoogle Scholar
van Driest, E.R. 1955 The Turbulent Boundary Layer with Variable Prandtl Number, pp. 257271. Vieweg+Teubner Verlag.Google Scholar
Fan, Y., Li, W. & Pirozzoli, S. 2022 Energy exchanges in hypersonic flows. Phys. Rev. Fluids 7, L092601.10.1103/PhysRevFluids.7.L092601CrossRefGoogle Scholar
Fernholz, H.H. & Finley, P.J. 1980 A critical commentary on mean flow data for two-dimensional compressible turbulent boundary layers. Tech. Rep. 253. AGARDograph.Google Scholar
Huang, P.G., Coleman, G.N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.10.1017/S0022112095004599CrossRefGoogle Scholar
Ji, X., Li, X., Tong, F. & Yu, C. 2023 Large eddy simulation of shock wave/turbulent boundary layer interaction under incipient and fully seperated conditions. Phys. Fluids 35 (4), 046106.Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.10.1017/S0022112087000892CrossRefGoogle Scholar
Kulick, J.D., Fessler, J.R. & Eation, J.K. 1994 Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277, 109134.10.1017/S0022112094002703CrossRefGoogle Scholar
Lee, J. & Lee, C. 2015 Modification of particle-laden near-wall turbulence: effect of stokes number. Phys. Fluids 27, 023303.10.1063/1.4908277CrossRefGoogle Scholar
Lenormand, E., Sagaut, P. & Ta Phuoc, L. 2000 Large eddy simulation of subsonic and supersonic channel flow at moderate Reynolds number. Intl J. Numer. Meth. Fluids 32 (4), 369406.10.1002/(SICI)1097-0363(20000229)32:4<369::AID-FLD943>3.0.CO;2-63.0.CO;2-6>CrossRefGoogle Scholar
Li, T., Cui, Z., Yuan, X., Zhang, Y., Zhou, Q. & Zhao, L. 2023 Particle dynamics in compressible turbulent vertical channel flows. Phys. Fluids 35 (8), 083332.10.1063/5.0155642CrossRefGoogle Scholar
Liu, H., Shi, Y. & Zheng, X. 2024 Scaling law of the second-order structure function over the entire sandstorm process. J. Fluid Mech. 978, A29.10.1017/jfm.2023.984CrossRefGoogle Scholar
Loth, E. 2008 Compressibility and rarefaction effects on drag of a spherical particle. AIAA J. 46 (9), 22192228.10.2514/1.28943CrossRefGoogle Scholar
Loth, E., Daspit, J.T. & Jeong, M. 2021 Supersonic and hypersonic drag coefficients for a sphere. AIAA J. 59 (8), 32613274.10.2514/1.J060153CrossRefGoogle Scholar
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.10.1063/1.864230CrossRefGoogle Scholar
Mittal, A. & Girimaji, S.S. 2019 Mathematical framework for analysis of internal energy dynamics and spectral distribution in compressible turbulent flows. Phys. Rev. Fluids 4, 042601(R).10.1103/PhysRevFluids.4.042601CrossRefGoogle Scholar
Morkovin, M.V. 1962 Effects of compressibility on turbulent flows. In Méchanique De LA Turbulence, (ed. A. Favre), pp. 367380. CNRS.Google Scholar
Paris, A.D. 2001 Turbulence attenuation in a particle-laden flow. PhD thesis, Stanford University.Google Scholar
Peng, C., Wang, L.-P. & Chen, S. 2024 Preferential accumulation of finite-size particles in near-wall streaks. J. Fluid Mech. 980, A38.10.1017/jfm.2024.41CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Pouransari, H. & Mani, A. 2016 Effects of preferential concentration on heat transfer in particle-based solar receivers. J. Sol. Energy Engng 139 (2), 021008.10.1115/1.4035163CrossRefGoogle Scholar
Ravindran, M., Bricalli, M., Pudsey, A. & Ogawa, H. 2019 Mixing characteristics of cracked gaseous hydrocarbon fuels in a scramjet combustor. Acta Astronaut. 162, 168184.10.1016/j.actaastro.2019.06.010CrossRefGoogle Scholar
Reynolds, O. 1874 On the extent and action of the heating surface of steam boilers. Manchester Lit. Phil. Soc. 14, 712.Google Scholar
Reynolds, O. 1961 On the extent and action of the heating surface of steam boilers. Intl J. Heat Mass Transfer 3, 163166.10.1016/0017-9310(61)90087-4CrossRefGoogle Scholar
Ruan, Y. & Xiao, Z. 2024 a Effect of shear-induced lift on particle motion and turbulence modulation in fully developed compressible turbulent channel flow. In Proc. IUTAM Symp. Turbul. Struct. Part.-Turbul. Interact, (eds Zheng, X. & Balachandar, S.), pp. 212228. Springer Nature Switzerland.Google Scholar
Ruan, Y. & Xiao, Z. 2024 b On the shear-induced lift in two-way coupled turbulent channel flow laden with heavy particles. J. Fluid Mech. 984, A24.10.1017/jfm.2024.214CrossRefGoogle Scholar
Rubesin, M.W. 1990 Extra compressibility terms for Favre-averaged two-equation models of inhomogeneous turbulent flows. Tech. Rep. 177556. NASA.Google Scholar
Saffman, P.G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22 (2), 385400.10.1017/S0022112065000824CrossRefGoogle Scholar
Saffman, P.G. 1968 The lift on a small sphere in a slow shear flow. Corrigendum. J. Fluid Mech. 31 (3), 624.Google Scholar
Salinas, J.S., Balachandar, S., Shringarpure, M., Fedele, J., Hoyal, D., Zuñiga, S. & Cantero, M.I. 2021 Anatomy of subcritical submarine flows with a lutocline and an intermediate destruction layer. Nat. Commun. 12 (1), 1649.10.1038/s41467-021-21966-yCrossRefGoogle Scholar
Schiller, L. & Naumann, A.Z. 1933 Uber grundlegenden berechnungen bei der schwerkraftaufberitung. Ver. Deut. Ing. 77, 318320.Google Scholar
Shao, X., Wu, T. & Yu, Z. 2012 Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. J. Fluid Mech. 693, 319344.10.1017/jfm.2011.533CrossRefGoogle Scholar
Shu, C.-W. & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439471.10.1016/0021-9991(88)90177-5CrossRefGoogle Scholar
Stadler, J.R. & Zurick, V.J. 1951 Theoretical aerodynamic characteristics of bodies in free-molecule flow field. Tech. Rep. NACA-TN-2423. NASA.Google Scholar
Steger, J.L. & Warming, R.F. 1981 Flux vector splitting of the inviscid gas dynamics equations with application to finite-difference method. J. Comput. Phys. 40, 263293.10.1016/0021-9991(81)90210-2CrossRefGoogle Scholar
Stokes, G.G. 1850 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Philos. Soc. 6, 8.Google Scholar
Tan, T. & Chen, Y. 2010 Review of study on solid particle solar receivers. Renew. Sustain. Energy Rev. 14 (1), 265276.10.1016/j.rser.2009.05.012CrossRefGoogle Scholar
Tsai, S.-T. 1956 Sedimentation motion of sand particles in moving water (i): the resistance on a small sphere moving in non-uniform flow. Acta Phys. Sin. 12 (5), 409418.Google Scholar
Tsai, S.-T. 2022 Sedimentation motion of sand particles in moving water (i): the resistance on a small sphere moving in non-uniform flow. Theor. Appl. Mech. Lett. 12, 100392.10.1016/j.taml.2022.100392CrossRefGoogle Scholar
Uhlmann, M. 2008 Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20 (5), 053305.10.1063/1.2912459CrossRefGoogle Scholar
Vreman, A.W. 2015 Turbulence attenuation in particle-laden flow in smooth and rough channels. J. Fluid Mech. 773, 103136.10.1017/jfm.2015.208CrossRefGoogle Scholar
Walz, A. 1969 Boundary Layers of Flow and Temperature. M.I.T. Press.Google Scholar
Wang, P., Zhou, B. & Zheng, X. 2024 Turbophoresis and preferential accumulation of inertial particles in compressible turbulent channel flow: effect of Mach number. Phys. Rev. Fluids 9, 034305.10.1103/PhysRevFluids.9.034305CrossRefGoogle Scholar
Wenzel, W., Gibis, T., Kloker, M. & Rist, U. 2021 Reynolds analogy factor in self-similar compressible turbulent boundary layers with pressure gradients. J. Fluid Mech. 907, R4.10.1017/jfm.2020.876CrossRefGoogle Scholar
Young, A.D. 1951 The equations of motion and energy and the velocity profile of a turbulent boundary layer in a compressible fluid. Tech. Rep. 42. The college of aeronautics, Cranfield.Google Scholar
Yu, Z., Xia, Y., Guo, Y. & Lin, J. 2021 Modulation of turbulence intensity by heavy finite-size particles in upward channel flow. J. Fluid Mech. 913, A3.10.1017/jfm.2020.1140CrossRefGoogle Scholar
Zhang, J., Guo, T., Dang, G. & Li, X. 2024 Effects of wall temperature on hypersonic shock wave/turbulent boundary layer interactions. J. Fluid Mech. 990, A21.10.1017/jfm.2024.533CrossRefGoogle Scholar
Zhang, Y.-S., Bi, W.-T., Hussain, F. & She, Z.-S. 2014 A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392420.10.1017/jfm.2013.620CrossRefGoogle Scholar
Zhao, L., Andersson, H.I. & Gillissen, J.J.J. 2013 Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech. 715, 3259.10.1017/jfm.2012.492CrossRefGoogle Scholar