Hostname: page-component-5447f9dfdb-4rns8 Total loading time: 0 Render date: 2025-07-28T05:37:24.830Z Has data issue: false hasContentIssue false

Mechanism of the pinch-off electrohydrodynamic printing breaking through the characteristic frequency limit

Published online by Cambridge University Press:  24 July 2025

Guozhen Wang
Affiliation:
Institute for Advanced Electronics Manufacturing, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
Wei Chen*
Affiliation:
Institute for Advanced Electronics Manufacturing, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
Jiankui Chen*
Affiliation:
Institute for Advanced Electronics Manufacturing, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
Chao Hu
Affiliation:
Institute for Advanced Electronics Manufacturing, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
Ziwei Zhao
Affiliation:
Institute for Advanced Electronics Manufacturing, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
Zhouping Yin
Affiliation:
Institute for Advanced Electronics Manufacturing, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
*
Corresponding authors: Jiankui Chen, chenjk@hust.edu.cn; Wei Chen, chen_w@hust.edu.cn
Corresponding authors: Jiankui Chen, chenjk@hust.edu.cn; Wei Chen, chen_w@hust.edu.cn

Abstract

Dot array deposition through electrohydrodynamic (EHD) printing is widely used for high resolution and material utilization advantages. However, the conventional printing method is subject to a printing frequency limit known as the capillary frequency of the meniscus oscillation, where the jet directly contacts the substrate. This makes the printing frequency of EHD printing maintain at a low level and that is difficult to improve. In this work, a method for high-frequency EHD printing through continuous pinch-off is proposed. The characteristic frequency is broken through. A model is established to reveal the printing mechanism by combining the Poisson–Nernst–Planck equation and the phase field method. The unreal charge leakage is prevented by constructing a transition function for the fluid’s properties. The stability of the Taylor cone’s deformation and the droplets’ generation is studied. The measurement criterion for printing frequency is determined. The suitable printing height that can prevent the jet from directly contacting the substrate is obtained by investigating its influence on the printing states and frequency. The phase diagram considering the liquid’s conductivity and viscosity is presented to distinguish whether the printing is based on the end-pinching or Rayleigh–Plateau instability. The influence of the conductivity, viscosity, flow rate and printing voltage on the printing frequencies is studied quantitatively. Finally, scaling laws for printing frequency are proposed by theoretical analyses and summarizing the numerical data. This work could be beneficial for further enhancing the printing frequency of EHD printing.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ajayi, O.O. 1978 A note on Taylor’s electrohydrodynamic theory. Proc. R. Soc. Lond. A Math. Phys. Sci. 364 (1719), 499507.Google Scholar
An, S., Lee, M.W., Kim, N.Y., Lee, C., Al-Deyab, S.S., James, S.C. & Yoon, S.S. 2014 Effect of viscosity, electrical conductivity, and surface tension on direct-current-pulsed drop-on-demand electrohydrodynamic printing frequency. Appl. Phys. Lett. 105 (21), 214102.10.1063/1.4902241CrossRefGoogle Scholar
Bober, D.B. & Chen, C.H. 2011 Pulsating electrohydrodynamic cone-jets: from choked jet to oscillating cone. J. Fluid Mech. 689, 552563.10.1017/jfm.2011.453CrossRefGoogle Scholar
Cahn, J.W. & Hilliard, J.E. 1958 Free energy of a nonuniform system. I. Interfacial Free Energy.. J. Chem. Phys. 28, 258267.10.1063/1.1744102CrossRefGoogle Scholar
Chen, H., Wang, G., An, T., Yin, Z. & Fang, H. 2024 Modelling the first droplet emission from an electrified liquid meniscus hanging at the nozzle tip. J. Fluid Mech. 987, A38.10.1017/jfm.2024.430CrossRefGoogle Scholar
Choi, H.K., Park, J.U., Park, O.O., Ferreira, P.M., Georgiadis, J.G. & Rogers, J.A. 2008 Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing. Appl. Phys. Lett. 92 (12), 123109.10.1063/1.2903700CrossRefGoogle Scholar
Cloupeau, M. & Prunet-Foch, B. 1994 Electrohydrodynamic spraying functioning modes: a critical review. J. Aerosol. Sci. 25 (6), 10211036.10.1016/0021-8502(94)90199-6CrossRefGoogle Scholar
Collins, R.T., Harris, M.T. & Basaran, O.A. 2007 Breakup of electrified jets. J. Fluid Mech. 588, 75129.10.1017/S0022112007007409CrossRefGoogle Scholar
Collins, R.T., Jones, J.J., Harris, M.T. & Basaran, O.A. 2008 Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat. Phys. 4 (2), 149154.10.1038/nphys807CrossRefGoogle Scholar
Collins, R.T., Sambath, K., Harris, M.T. & Basaran, O.A. 2013 Universal scaling laws for the disintegration of electrified drops. Proc. Natl. Acad. Sci. USA 110 (13), 49054910.10.1073/pnas.1213708110CrossRefGoogle ScholarPubMed
Das, S.K., Dalal, A. & Tomar, G. 2021 Electrohydrodynamic-induced interactions between droplets. J. Fluid Mech. 915, A88.10.1017/jfm.2021.120CrossRefGoogle Scholar
Gañán-Calvo, A.M. 2004 On the general scaling theory for electrospraying. J. Fluid Mech. 507, 203212.10.1017/S0022112004008870CrossRefGoogle Scholar
Gañán-Calvo, A.M., López-Herrera, J.M., Herrada, M.A., Ramos, A. & Montanero, J.M. 2018 Review on the physics of electrospray: from electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray. J. Aerosol. Sci. 125, 3256.10.1016/j.jaerosci.2018.05.002CrossRefGoogle Scholar
Gañán-Calvo, A.M., López-Herrera, J.M., Rebollo-Muñoz, N. & Montanero, J.M. 2016 The onset of electrospray: the universal scaling laws of the first ejection. Sci. Rep. 6 (1), 32357.10.1038/srep32357CrossRefGoogle ScholarPubMed
Gibou, F., Fedkiw, R. & Osher, S. 2018 A review of level-set methods and some recent applications. J. Comput. Phys. 353, 82109.10.1016/j.jcp.2017.10.006CrossRefGoogle Scholar
Guan, Y., Wu, S., Wang, M., Tian, Y., Yu, C., Lai, W. & Huang, Y. 2022 Numerical investigation of high-frequency pulsating electrohydrodynamic jet at low electric Bond numbers. Phys. Fluids 34 (1), 012001.10.1063/5.0078193CrossRefGoogle Scholar
Hao, G., Lv, L., Yu, W., Liu, X. & Chen, Y. 2024 Droplet electrohydrodynamic deformation in a shear flow field. Phys. Fluids 36 (3), 032121.10.1063/5.0196394CrossRefGoogle Scholar
Herrada, M.A., López-Herrera, J.M., Gañán-Calvo, A.M., Vega, E.J., Montanero, J.M. & Popinet, S. 2012 Numerical simulation of electrospray in the cone-jet mode. Phys. Rev. E 86 (2), 026305.10.1103/PhysRevE.86.026305CrossRefGoogle ScholarPubMed
Hijano, A.J., Loscertales, I.G., Ibáñez, S.E. & Higuera, F.J. 2015 Periodic emission of droplets from an oscillating electrified meniscus of a low-viscosity, highly conductive liquid. Phys. Rev. E 91 (1), 013011.10.1103/PhysRevE.91.013011CrossRefGoogle ScholarPubMed
Hirt, C.W., Amsden, A.A. & Cook, J.L. 1974 An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 14 (3), 227253.10.1016/0021-9991(74)90051-5CrossRefGoogle Scholar
Hirt, C.W. & Nichols, B.D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201225.10.1016/0021-9991(81)90145-5CrossRefGoogle Scholar
Huh, H. & Wirz, R.E. 2022 Simulation of electrospray emission processes for low to moderate conductivity liquids. Phys. Fluids 34 (11), 112017.10.1063/5.0120737CrossRefGoogle Scholar
Ismail, A.S., Yao, J., Xia, H.H. & Stark, J.P.W. 2018 Breakup length of electrified liquid jets: scaling laws and applications. Phys. Rev. Appl. 10 (6), 064010.10.1103/PhysRevApplied.10.064010CrossRefGoogle Scholar
Jacqmin, D. 1999 Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155 (1), 96127.10.1006/jcph.1999.6332CrossRefGoogle Scholar
Li, H., Yang, W., Duan, Y., Nie, Q., Shao, Z., Yin, Z. & Huang, Y. 2021 Enhancing pulsed electrohydrodynamic printing frequency via high-order-mode ejection. Phys. Fluids 33 (8), 081704.10.1063/5.0059374CrossRefGoogle Scholar
López-Herrera, J.M., Gañán-Calvo, A.M., Popinet, S. & Herrada, M.A. 2015 Electrokinetic effects in the breakup of electrified jets: a volume-of-fluid numerical study. Int. J. Multiphase Flow 71, 1422.10.1016/j.ijmultiphaseflow.2014.12.005CrossRefGoogle Scholar
López-Herrera, J.M., Herrada, M.A. & Gañán-Calvo, A.M. 2023 Electrokinetic modelling of cone-jet electrosprays. J. Fluid Mech. 964, A19.10.1017/jfm.2023.315CrossRefGoogle Scholar
López-Herrera, J.M., Popinet, S. & Herrada, M.A. 2011 A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. J. Comput. Phys. 230 (5), 19391955.10.1016/j.jcp.2010.11.042CrossRefGoogle Scholar
Lu, Y., Zhong, S., Chong, K., Yang, Y., Yue, T., Zhang, Q. & Li, L. (2024) Numerical study on the influence of fluid properties in constant-voltage electrohydrodynamic pulsating jets. Phys. Fluids, 36 (1), 012125.10.1063/5.0181283CrossRefGoogle Scholar
Marginean, I., Nemes, P., Parvin, L. & Vertes, A. 2006 How much charge is there on a pulsating Taylor cone? Appl. Phys. Lett. 89 (6), 064104.10.1063/1.2266889CrossRefGoogle Scholar
Marginean, I., Nemes, P. & Vertes, A. 2006 Order-chaos-order transitions in electrosprays: the electrified dripping faucet. Phys. Rev. Lett. 97 (6), 064502.10.1103/PhysRevLett.97.064502CrossRefGoogle ScholarPubMed
Melcher, J.R. & Taylor, G.I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1 (1), 111146.10.1146/annurev.fl.01.010169.000551CrossRefGoogle Scholar
Mishra, S., Barton, K.L., Alleyne, A.G., Ferreira, P.M. & Rogers, J.A. 2010 High-speed and drop-on-demand printing with a pulsed electrohydrodynamic jet. J. Micromech. Microeng. 20 (9), 095026.10.1088/0960-1317/20/9/095026CrossRefGoogle Scholar
Misra, K. & Gamero-Castaño, M. 2022 Leaky-dielectric phase field model for the axisymmetric breakup of an electrified jet. Phys. Rev. Fluids 7 (6), 064004.10.1103/PhysRevFluids.7.064004CrossRefGoogle Scholar
Misra, K. & Gamero-Castaño, M. 2023 Ion emission from nanodroplets undergoing Coulomb explosions: a continuum numerical study. J. Fluid Mech. 958, A32.10.1017/jfm.2023.107CrossRefGoogle Scholar
Montanero, J.M. & Gañán-Calvo, A.M. 2020 Dripping, jetting and tip streaming. Rep. Prog. Phys. 83 (9), 097001.10.1088/1361-6633/aba482CrossRefGoogle ScholarPubMed
Narváez-Muñoz, C., Hashemi, A.R., Hashemi, M.R., Segura, L.J. & Ryzhakov, P.B. 2024 Computational ElectroHydroDynamics in microsystems: a review of challenges and applications. Arch. Comput. Meth. Engng 32 (1), 535569.10.1007/s11831-024-10147-xCrossRefGoogle Scholar
Nie, Q., Li, F., Ma, Q., Fang, H. & Yin, Z. 2021 Effects of charge relaxation on the electrohydrodynamic breakup of leaky-dielectric jets. J. Fluid Mech. 925, A4.10.1017/jfm.2021.639CrossRefGoogle Scholar
Plateau, J. 1857 I. Experimental and theoretical researches on the figures of equilibrium of a liquid mass withdrawn from the action of gravity. –Third series. Lond. Edinburgh Dubin Phil. Mag. J. Sci. 14 (90), 122.10.1080/14786445708642346CrossRefGoogle Scholar
Ponce-Torres, A., Rebollo-Muñoz, N., Herrada, M.A., Gañán-Calvo, A.M. & Montanero, J.M. 2018 The steady cone-jet mode of electrospraying close to the minimum volume stability limit. J. Fluid Mech. 857, 142172.10.1017/jfm.2018.737CrossRefGoogle Scholar
Qin, Y., Huang, H., Song, Z. & Xu, S. 2023 Droplet dynamics: a phase-field model of mobile charges, polarization, and its leaky dielectric approximation. Phys. Fluids 35 (8), 083327.10.1063/5.0159956CrossRefGoogle Scholar
Rayleigh, L. 1878 On the instability of jets. Proc. Lond. Math. Soc. s1-10 (1), 413.10.1112/plms/s1-10.1.4CrossRefGoogle Scholar
Rayleigh, Lord 1882 On the equilibrium of liquid conducting masses charged with electricity. Lond. Edinburgh Dubin Phil. Mag. J. Sci. 14 (87), 184186.10.1080/14786448208628425CrossRefGoogle Scholar
Santra, S., Mandal, S. & Chakraborty, S. 2021 Phase-field modeling of multicomponent and multiphase flows in microfluidic systems: a review. Intl J. Numer. Method. Heat Fluid Flow 31 (10), 30893131.10.1108/HFF-01-2020-0001CrossRefGoogle Scholar
Saville, D.A. 1997 ELECTROHYDRODYNAMICS: the Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29 (1), 2764.10.1146/annurev.fluid.29.1.27CrossRefGoogle Scholar
Schnitzer, O. & Yariv, E. 2015 The Taylor–Melcher leaky dielectric model as a macroscale electrokinetic description. J. Fluid Mech. 773, 133.10.1017/jfm.2015.242CrossRefGoogle Scholar
Stone, H.A., Bentley, B.J. & Leal, L.G. 1986 An experimental study of transient effects in the breakup of viscous drops. J. Fluid Mech. 173, 131158.10.1017/S0022112086001118CrossRefGoogle Scholar
Suo, X., Zhang, K., Huang, X., Wang, D., Jia, H., Yang, F., Zhang, W., Li, J., Tu, L. & Song, P. 2023 Electrospray beam currents in the cone-jet mode based on numerical simulation. Phys. Fluids 35 (1), 013603.10.1063/5.0131869CrossRefGoogle Scholar
Taylor, G.I., McEwan, A.D. & de Jong, L.N.J. 1966 Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proc. R. Soc. Lond. A: Math. Phys. Sci. 291, 159166.Google Scholar
Tomar, G., Gerlach, D., Biswas, G., Alleborn, N., Sharma, A., Durst, F., Welch, S.W.J. & Delgado, A. 2007 Two-phase electrohydrodynamic simulations using a volume-of-fluid approach. J. Comput. Phys. 227 (2), 12671285.10.1016/j.jcp.2007.09.003CrossRefGoogle Scholar
Wagoner, B.W., Vlahovska, P.M., Harris, M.T. & Basaran, O.A. 2021 Electrohydrodynamics of lenticular drops and equatorial streaming. J. Fluid Mech. 925, A36.10.1017/jfm.2021.651CrossRefGoogle Scholar
Wang, G., Chen, W., Chen, J., Hu, C., Chen, H. & Yin, Z. 2024 Pinch-off dynamics of an electrohydrodynamic tip streaming jet transforming into the microdroplet. Phys. Fluids 36 (7), 072010.10.1063/5.0215316CrossRefGoogle Scholar
Wang, H., Zhang, Y., Liu, Y., Chen, Z., Li, Y., Li, X. & Xu, X. 2023 High-efficiency and high-resolution patterned quantum dot light emitting diodes by electrohydrodynamic printing. Nanoscale Adv. 5 (4), 11831189.10.1039/D2NA00862ACrossRefGoogle ScholarPubMed
Wang, Q., Zhang, G., Zhang, H., Duan, Y., Yin, Z. & Huang, Y. 2021 High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Adv. Funct. Mater. 31 (28), 2100857.10.1002/adfm.202100857CrossRefGoogle Scholar
Yang, W., Li, H., Duan, Y. & Yin, Z. 2024 Electrohydrodynamic eigenfrequency and jetting frequency analysis via lagrangian dynamical model. Phys. Fluids 36 (6), 062006.10.1063/5.0209644CrossRefGoogle Scholar
Yin, Z., Huang, Y., Yang, H., Chen, J., Duan, Y. & Chen, W. 2022 Flexible electronics manufacturing technology and equipment. Sci. China Technol. Sci. 65 (9), 19401956.10.1007/s11431-022-2098-1CrossRefGoogle Scholar
Yin, Z., Wang, D., Guo, Y., Zhao, Z., Li, L., Chen, W. & Duan, Y. 2024 Electrohydrodynamic printing for high resolution patterning of flexible electronics toward industrial applications. InfoMat 6 (2), e12505.10.1002/inf2.12505CrossRefGoogle Scholar
Yuan, X. & Xiong, Z. 2018 High frequency pulsed electrohydrodynamic printing with controllable fine droplets. J. Micromech. Microeng. 28 (9), 095008.10.1088/1361-6439/aac4b4CrossRefGoogle Scholar
Yue, P., Feng, J.J., Liu, C. & Shen, J. 2004 A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293317.10.1017/S0022112004000370CrossRefGoogle Scholar