No CrossRef data available.
Published online by Cambridge University Press: 24 July 2025
Dot array deposition through electrohydrodynamic (EHD) printing is widely used for high resolution and material utilization advantages. However, the conventional printing method is subject to a printing frequency limit known as the capillary frequency of the meniscus oscillation, where the jet directly contacts the substrate. This makes the printing frequency of EHD printing maintain at a low level and that is difficult to improve. In this work, a method for high-frequency EHD printing through continuous pinch-off is proposed. The characteristic frequency is broken through. A model is established to reveal the printing mechanism by combining the Poisson–Nernst–Planck equation and the phase field method. The unreal charge leakage is prevented by constructing a transition function for the fluid’s properties. The stability of the Taylor cone’s deformation and the droplets’ generation is studied. The measurement criterion for printing frequency is determined. The suitable printing height that can prevent the jet from directly contacting the substrate is obtained by investigating its influence on the printing states and frequency. The phase diagram considering the liquid’s conductivity and viscosity is presented to distinguish whether the printing is based on the end-pinching or Rayleigh–Plateau instability. The influence of the conductivity, viscosity, flow rate and printing voltage on the printing frequencies is studied quantitatively. Finally, scaling laws for printing frequency are proposed by theoretical analyses and summarizing the numerical data. This work could be beneficial for further enhancing the printing frequency of EHD printing.