Hostname: page-component-54dcc4c588-wlffp Total loading time: 0 Render date: 2025-10-02T04:42:33.030Z Has data issue: false hasContentIssue false

The macroscopic contact angle of water on ice

Published online by Cambridge University Press:  17 September 2025

Wladimir Sarlin*
Affiliation:
Laboratoire d’Hydrodynamique, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau 91120, France
Daniel Vito Papa
Affiliation:
Laboratoire d’Hydrodynamique, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau 91120, France
Rodolphe Grivet
Affiliation:
Laboratoire d’Hydrodynamique, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau 91120, France
Alexander Rosenbaum
Affiliation:
Laboratoire d’Hydrodynamique, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau 91120, France
Axel Huerre
Affiliation:
Laboratoire Matière et Systèmes Complexes (MSC), CNRS, UMR 7057, Université Paris Cité, Paris 75013, France
Thomas Séon
Affiliation:
Institut Franco-Argentin de Dynamique des Fluides pour l’Environnement (IFADyFE), CNRS (IRL 2027), Universidad de Buenos Aires, CONICET, Buenos Aires 1428, Argentina
Christophe Josserand
Affiliation:
Laboratoire d’Hydrodynamique, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau 91120, France
*
Corresponding author: Wladimir Sarlin, wladimirsarlin@outlook.com

Abstract

Wettability quantifies the affinity of a liquid over a substrate and determines whether the surface is repellent or not. When both the liquid and the solid phases are made of the same chemical substance and are at thermal equilibrium, complete wetting is expected in principle, as observed, for instance, with drops of molten metals spreading on their solid counterparts. However, this is not the case for water on ice. Although there is a growing consensus on the partial wetting of water on ice and several estimates available for the value of the associated macroscopic contact angle, the question of whether these values correspond to the contact angle at mechanical and thermal equilibrium is still open. In the present paper, we address this issue experimentally and demonstrate the existence of such a macroscopic contact angle of water on ice, from measurements and theoretical arguments. Indeed, when depositing water droplets on smooth polycrystalline ice layers with accurately controlled surface temperatures, we observe that spreading is unaffected by thermal effects and phase change close enough to the melting point (namely, for undercoolings below 1 K) so that conditions of thermal equilibrium are closely approached. Whereas the short time motion of the contact line is driven by an inertial-capillary balance, the evolution towards mechanical equilibrium is described by a viscous-capillary dynamics and is therefore capillary – and not thermally – related. Moreover, we show that the resulting contact angle remains constant for undercoolings below 1 K. In this way, we show the existence of a non-zero macroscopic contact angle of water on ice under conditions of mechanical and thermal equilibrium, which is very close to $12^\circ$. We anticipate this key finding will significantly improve the understanding of capillary flows in the presence of phase change, which is of special interest in the realm of ice morphogenesis and glaciology, and will also be beneficial with the aim of developing numerical methods for resolving triple-line dynamics.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ambler, M., Vorselaars, B., Allen, M.P. & Quigley, D. 2017 Solid–liquid interfacial free energy of ice ih, ice ic, and ice 0 within a mono-atomic model of water via the capillary wave method. J. Chem. Phys. 146 (7), 074701.10.1063/1.4975776CrossRefGoogle Scholar
Asakawa, H., Sazaki, G., Nagashima, K., Nakatsubo, S. & Furukawa, Y. 2016 Two types of quasi-liquid layers on ice crystals are formed kinetically. Proc. Natl Acad. Sci. USA 113 (7), 17491753.10.1073/pnas.1521607113CrossRefGoogle ScholarPubMed
Beltaos, S. 2013 River Ice Formation. Committee On River Ice Processes and the Environment. Canadian Geophysical Union.Google Scholar
Biance, A.-L., Clanet, C. & Quéré, D. 2004 First steps in the spreading of a liquid droplet. Phys. Rev. E 69, 016301.10.1103/PhysRevE.69.016301CrossRefGoogle ScholarPubMed
Bird, J.C., Mandre, S. & Stone, H.A. 2008 Short-time dynamics of partial wetting. Phys. Rev. Lett. 100, 234501.10.1103/PhysRevLett.100.234501CrossRefGoogle ScholarPubMed
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.10.1103/RevModPhys.81.739CrossRefGoogle Scholar
Brochard-Wyart, F., Di Meglio, J.-M., Quére, D. & De Gennes, P.-G. 1991 Spreading of nonvolatile liquids in a continuum picture. Langmuir 7 (2), 335338.10.1021/la00050a023CrossRefGoogle Scholar
Chen, A.S.-H. & Morris, S.W. 2011 Experiments on the morphology of icicles. Phys. Rev. E 83, 026307.10.1103/PhysRevE.83.026307CrossRefGoogle ScholarPubMed
Cox, R.G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.10.1017/S0022112086000332CrossRefGoogle Scholar
Daerr, A. & Mogne, A. 2016 Pendent_drop: an imagej plugin to measure the surface tension from an image of a pendent drop. J. Open Res. Softw. 4 (1), e3.Google Scholar
Dash, J.G., Rempel, A.W. & Wettlaufer, J.S. 2006 The physics of premelted ice and its geophysical consequences. Rev. Mod. Phys. 78, 695741.10.1103/RevModPhys.78.695CrossRefGoogle Scholar
De Gennes, P.-G. 1984 Dynamique d’étalement d’une goutte. Comptes-rendus des séances de l’Académie des sciences. Série 2, Mécanique-physique, chimie, sciences de l’univers, sciences de la terre 298 (4), 111115.Google Scholar
Demmenie, M., Gorin, B., Kolpakov, P., Smith, S., Kellay, H. & Bonn, D. 2025 Partial wetting of water on ice. Phys. Rev. Fluids 10, 054002.10.1103/PhysRevFluids.10.054002CrossRefGoogle Scholar
Demmenie, M., Reus, L., Kolpakov, P., Woutersen, S., Bonn, D. & Shahidzadeh, N. 2023 Growth and form of rippled icicles. Phys. Rev. Appl. 19, 024005.10.1103/PhysRevApplied.19.024005CrossRefGoogle Scholar
Djikaev, Y.S. & Ruckenstein, E. 2017 Self-consistent determination of the ice–air interfacial tension and ice–water–air line tension from experiments on the freezing of water droplets. J. Phys. Chem. C 121 (30), 1643216439.10.1021/acs.jpcc.7b05201CrossRefGoogle Scholar
Espinosa, J.R., Vega, C. & Sanz, E. 2016 Ice–water interfacial free energy for the TIP4P, TIP4P/2005, TIP4P/Ice, and mW models as obtained from the mold integration technique. J. Phys. Chem. C 120 (15), 80688075.Google Scholar
de Gennes, P.-G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.10.1103/RevModPhys.57.827CrossRefGoogle Scholar
Grivet, R., Huerre, A., Séon, T., Duchemin, L. & Josserand, C. 2024 Freezing receding contact lines. arXiv:2409.00385 Google Scholar
Grivet, R., Monier, A., Huerre, A., Josserand, C. & Séon, T. 2022 Contact line catch up by growing ice crystals. Phys. Rev. Lett. 128, 254501.Google ScholarPubMed
Guyon, É., Hulin, J.-P. & Petit, L. 2012 Hydrodynamique Physique 3e édition. EDP Sciences.Google Scholar
Huerre, A., Josserand, C. & Séon, T. 2025 Freezing and capillarity. Annu. Rev. Fluid Mech. 57 (2025), 257284.10.1146/annurev-fluid-121021-111652CrossRefGoogle Scholar
Ketcham, W.M. & Hobbs, P.V. 1969 An experimental determination of the surface energies of ice. Phil. Mag. J. Theor. Exp. Appl. Phys. 19 (162), 11611173.Google Scholar
Knight, C.A. 1967 The contact angle of water on ice. J. Colloid Interface Sci. 25 (2), 280284.10.1016/0021-9797(67)90031-8CrossRefGoogle Scholar
Knight, C.A. 1971 Experiments on the contact angle of water on ice. Phil. Mag. J. Theor. Exp. Appl. Phys. 23 (181), 153165.Google Scholar
Knight, C.A. 1996 Surface layers on ice. J. Geophys. Res.: Atmos. 101 (D8), 1292112928.10.1029/96JD00554CrossRefGoogle Scholar
Laforte, J.L., Allaire, M.A. & Laflamme, J. 1998 State-of-the-art on power line de-icing. Atmos. Res. 46 (1), 143158.Google Scholar
Lide, D.R. 2004 CRC Handbook of Chemistry and Physics, vol. 85. CRC Press.Google Scholar
Liu, Y., Chen, W., Peng, Y. & Hu, H. 2019 An experimental study on the dynamic ice accretion processes on bridge cables with different surface modifications. JWEIA 190, 218229.Google Scholar
Luengo-Márquez, J., Izquierdo-Ruiz, F. & MacDowell, L.G. 2022 Intermolecular forces at ice and water interfaces: premelting, surface freezing, and regelation. J. Chem. Phys. 157 (4), 044704.Google ScholarPubMed
Lynch, F.T. & Khodadoust, A. 2001 Effects of ice accretions on aircraft aerodynamics. Prog. Aerosp. Sci. 37 (8), 669767.10.1016/S0376-0421(01)00018-5CrossRefGoogle Scholar
Makkonen, L. 1997 Surface melting of ice. J. Phys. Chem. B 101 (32), 61966200.10.1021/jp963248cCrossRefGoogle Scholar
de Miramon, H., Sarlin, W., Huerre, A., Cobelli, P., Séon, T. & Josserand, C. 2025 Free surface topography of capillary flows using spatiotemporal phase shifting profilometry. Exp. Fluids 66 (5), 89.10.1007/s00348-025-04006-zCrossRefGoogle Scholar
Montagnat, M., Weiss, J., Cinquin-Lapierre, B., Labory, P.A., Moreau, L., Damilano, F. & Lavigne, D. 2010 Waterfall ice: formation, structure and evolution. J. Glaciol. 56 (196), 225234.10.3189/002214310791968412CrossRefGoogle Scholar
Murata, K.-I., Asakawa, H., Nagashima, K., Furukawa, Y. & Sazaki, G. 2016 Thermodynamic origin of surface melting on ice crystals. Proc. Natl Acad. Sci. USA 113 (44), E6741E6748.10.1073/pnas.1608888113CrossRefGoogle ScholarPubMed
Papa, D., Josserand, C. & Cohen, C. 2025 Shape of ice stalagmites. Phys. Rev. Fluids. Available at: https://journals.aps.org/prfluids/accepted/10.1103/sc66-hrv2.Google Scholar
Pruppacher, H.R. & Klett, J.D. 2004 Microphysics of Clouds and Precipitation. Springer Dordrecht.Google Scholar
Quetzeri-Santiago, M.A., Castrejón-Pita, J.R. & Castrejón-Pita, A.A. 2020 On the analysis of the contact angle for impacting droplets using a polynomial fitting approach. Exp. Fluids 61 (6), 143.Google Scholar
de Reuck, A.V.S. 1957 The surface free energy of ice. Nature 179 (4570), 11191120.10.1038/1791119a0CrossRefGoogle Scholar
Sarlin, W., Grivet, R., Xu, J., Huerre, A., Séon, T. & Josserand, C. 2024 Role of melting and solidification in the spreading of an impacting water drop. J. Fluid Mech. 996, A14.10.1017/jfm.2024.817CrossRefGoogle Scholar
Sazaki, G., Zepeda, S., Nakatsubo, S., Yokomine, M. & Furukawa, Y. 2012 Quasi-liquid layers on ice crystal surfaces are made up of two different phases. Proc. Natl Acad. Sci. USA 109 (4), 10521055.10.1073/pnas.1116685109CrossRefGoogle ScholarPubMed
Schohl, G.A. & Ettema, R. 1990 Two-dimensional spreading and thickening of aufeis. J. Glaciol. 36 (123), 169178.10.3189/S0022143000009412CrossRefGoogle Scholar
Sebilleau, J., Ablonet, E., Tordjeman, P. & Legendre, D. 2021 Air humidity effects on water-drop icing. Phys. Rev. E 104, L032802.10.1103/PhysRevE.104.L032802CrossRefGoogle ScholarPubMed
Slater, B. & Michaelides, A. 2019 Surface premelting of water ice. Nat. Rev. Chem. 3 (3), 172188.10.1038/s41570-019-0080-8CrossRefGoogle Scholar
Tanner, L.H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 12 (9), 1473.Google Scholar
Thiévenaz, V., Josserand, C. & Séon, T. 2020 Retraction and freezing of a water film on ice. Phys. Rev. Fluids 5, 041601.10.1103/PhysRevFluids.5.041601CrossRefGoogle Scholar
Thiévenaz, V., Séon, T. & Josserand, C. 2019 Solidification dynamics of an impacted drop. J. Fluid Mech. 874, 756773.10.1017/jfm.2019.459CrossRefGoogle Scholar
Van Oss, C.J., Giese, R.F., Wentzek, R., Norris, J. & Chuvilin, E.M. 1992 Surface tension parameters of ice obtained from contact angle data and from positive and negative particle adhesion to advancing freezing fronts. J. Adhes. Sci. Technol. 6 (4), 503516.10.1163/156856192X00827CrossRefGoogle Scholar
Van de Velde, P., Fabre-Parras, N., Josserand, C., Duprat, C. & Protière, S. 2023 Spreading and absorption of a drop on a swelling surface. Europhys. Lett. 144 (3), 33001.10.1209/0295-5075/ad0eedCrossRefGoogle Scholar
Voinov, O.V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11 (5), 714721.10.1007/BF01012963CrossRefGoogle Scholar
Wang, Z. 2017 Recent progress on ultrasonic de-icing technique used for wind power generation, high-voltage transmission line and aircraft. Energy Build. 140, 4249.Google Scholar
Wettlaufer, J.S. & Worster, M.G. 2006 Premelting dynamics. Annu. Rev. Fluid Mech. 38 (2006), 427452.10.1146/annurev.fluid.37.061903.175758CrossRefGoogle Scholar
Winkels, K.G., Weijs, J.H., Eddi, A. & Snoeijer, J.H. 2012 Initial spreading of low-viscosity drops on partially wetting surfaces. Phys. Rev. E 85, 055301.10.1103/PhysRevE.85.055301CrossRefGoogle ScholarPubMed