Hostname: page-component-54dcc4c588-rz4zl Total loading time: 0 Render date: 2025-10-14T04:44:42.249Z Has data issue: false hasContentIssue false

Hydrodynamics of an actively heaving flexible foil under an incident surface wave

Published online by Cambridge University Press:  14 October 2025

Sang Jin Ji
Affiliation:
Department of Mechanical Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
Sung Goon Park*
Affiliation:
Department of Mechanical Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
Ming Li
Affiliation:
Department of Mechanical Engineering and St Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55455, USA
Lian Shen*
Affiliation:
Department of Mechanical Engineering and St Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55455, USA
*
Corresponding authors: Sung Goon Park, psg@seoultech.ac.kr; Lian Shen, shen@umn.edu
Corresponding authors: Sung Goon Park, psg@seoultech.ac.kr; Lian Shen, shen@umn.edu

Abstract

We numerically investigate the hydrodynamics of an actively heaving flexible foil flapping under a wave surface. The coupled level set and volume-of-fluid method is used to capture the air–water interface, and the immersed-boundary method is used to capture the fluid–structure interaction. A sinusoidal heaving motion is imposed at the foil’s leading edge, and its posterior parts oscillate passively according to its flexible characteristics, allowing dynamic interactions with the wave-induced flow. The propulsive performance of the foil is examined for the influence of three main factors: the ratio of the heaving frequency ($f_{\!f}$) to the wave frequency ($f_w$), the phase difference between the heaving motion and the incident wave ($\mathit \varPhi$) and the submergence depth of the foil ($D$). At $\mathit \varPhi = 0$, the results reveal that the propulsion of the flexible foil benefits from flapping near the wave surface when $f_{\!f}/f_w = 0.5$, and the propulsive efficiency is optimised at $D/L = 1$, where $L$ is the foil’s length. However, when $f_{\!f}/f_w$ = 1.0 and 2.0, the propulsion of the flexible foil is hindered near the wave surface. This hydrodynamic hindrance is closely related to vortex splitting and roll-up phenomena, which induce the formation of a drag wake. By adjusting the phase difference $\mathit \varPhi$, the hindrance in the flexible foil propulsion can be mitigated to enhance propulsive performance. To further understand the relationship between the flapping kinematics and propulsive dynamics, we perform a scaling analysis based on lift force and added mass force, offering good quantification of propulsive performance.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Airy, G.B. 1845 Tides and Waves. B. Fellowes.Google Scholar
Anderson, J.M., Streitlien, K., Barrett, D.S. & Triantafyllou, M.S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.10.1017/S0022112097008392CrossRefGoogle Scholar
Antoci, C., Gallati, M. & Sibilla, S. 2007 Numerical simulation of fluid–structure interaction by SPH. Comput. Struct. 85 (11–14), 879890.10.1016/j.compstruc.2007.01.002CrossRefGoogle Scholar
Chung, M.H. 2016 Propulsive performance of a flapping plate near a free surface. J. Fluids Struct. 65, 411432.10.1016/j.jfluidstructs.2016.07.003CrossRefGoogle Scholar
Cleaver, D.J., Calderon, D.E., Wang, Z. & Gursul, I. 2013 Periodically plunging foil near a free surface. Exp. Fluid 54, 118.Google Scholar
Cui, Z., Yang, Z., Jiang, H.Z., Huang, W.X. & Shen, L. 2017 A sharp-interface immersed boundary method for simulating incompressible flows with arbitrarily deforming smooth boundaries. Intl J. Comput. Meth. 15 (01), 1750080.10.1142/S0219876217500803CrossRefGoogle Scholar
Das, A., Shukla, R.K. & Govardhan, R.N. 2019 Foil locomotion through non-sinusoidal pitching motion. J. Fluids Struct. 89, 191202.Google Scholar
Das, A., Shukla, R.K. & Govardhan, R.N. 2016 Existence of a sharp transition in the peak propulsive efficiency of a low-pitching foil. J. Fluid Mech. 800, 307326.10.1017/jfm.2016.399CrossRefGoogle Scholar
Das, A., Shukla, R.K. & Govardhan, R.N. 2022 Contrasting thrust generation mechanics and energetics of flapping foil locomotory states characterized by a unified scaling. J. Fluid Mech. 930, 27.Google Scholar
De Silva, L.W.A. & Yamaguchi, H. 2012 Numerical study on active wave devouring propulsion. J. Mar. Sci. Technol. 17, 261275.10.1007/s00773-012-0169-yCrossRefGoogle Scholar
Deng, J., Wang, S., Kandel, P. & Teng, L. 2022 Effects of free surface on a flapping-foil based ocean current energy extractor. Renew. Energy 181, 933944.CrossRefGoogle Scholar
Downie, A.T., Illing, B., Faria, A.M. & Rummer, J.L. 2020 Swimming performance of marine fish larvae: review of a universal trait under ecological and environmental pressure. Rev. Fish Biol. Fish. 30, 93108.Google Scholar
Esmaeilifar, E., Djavareshkian, M.H., Feshalami, B.F. & Esmaeili, A. 2017 Hydrodynamic simulation of an oscillating hydrofoil near free surface in critical unsteady parameter. Ocean Engng 141, 227236.CrossRefGoogle Scholar
Filippas, E.S. & Belibassakis, K.A. 2014 Hydrodynamic analysis of flapping-foil thrusters operating beneath the free surface and in waves. Engng Anal. Bound. Elem. 41, 4759.10.1016/j.enganabound.2014.01.008CrossRefGoogle Scholar
Filippas, E.S. & Belibassakis, K.A. 2022 A nonlinear time-domain BEM for the performance of 3D flapping-wing thrusters in directional waves. Ocean Engng 245, 110157.CrossRefGoogle Scholar
Fish, F.E. 1993 Power output and propulsive efficiency of swimming bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 185 (1), 179193.CrossRefGoogle Scholar
Fish, F.E. & Lauder, G.V. 2006 Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 38 (1), 193224.Google Scholar
Floryan, D., Van Buren, T., Rowley, C.W. & Smits, A.J. 2017 Scaling the propulsive performance of heaving and pitching foils. J. Fluid Mech. 822, 386397.Google Scholar
Floryan, D., Van Buren, T. & Smits, A.J. 2018 Efficient cruising for swimming and flying animals is dictated by fluid drag. Proc. Natl Acad. Sci. USA 115 (32), 81168118.10.1073/pnas.1805941115CrossRefGoogle ScholarPubMed
Goldstein, D., Handler, R. & Sirovich, L. 1993 Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105 (2), 354366.10.1006/jcph.1993.1081CrossRefGoogle Scholar
Grue, J., Mo, A. & Palm, E. 1988 Propulsion of a foil moving in water waves. J. Fluid Mech. 186, 393417.10.1017/S0022112088000205CrossRefGoogle Scholar
Gupta, S., Sharma, A., Agrawal, A., Thompson, M.C. & Hourigan, K. 2021 Hydrodynamics of a fish-like body undulation mechanism: scaling laws and regimes for vortex wake modes. Phys. Fluids 33 (10), 101904.Google Scholar
He, S., Liu, H. & Shen, L. 2022 a Simulation-based study of turbulent aquatic canopy flows with flexible stems. J. Fluid Mech. 947, A33.10.1017/jfm.2022.655CrossRefGoogle Scholar
He, S., Yang, Z., Sotiropoulos, F. & Shen, L. 2022 b Numerical simulation of interaction between multiphase flows and thin flexible structures. J. Comput. Phys. 448, 110691.10.1016/j.jcp.2021.110691CrossRefGoogle Scholar
Huang, W.X., Shin, S.J. & Sung, H.J. 2007 Simulation of flexible filaments in a uniform flow by the immersed boundary method. J. Comput. Phys. 226 (2), 22062228.Google Scholar
Isshiki, H. 1982 A theory of wave devouring propulsion (1st report): thrust generation by a linear wells turbine. J. Soc. Nav. Arch. Japan 151, 5464.Google Scholar
Jahanbakhsh, E., Vessaz, C., Maertens, A. & Avellan, F. 2015 Finite volume particle method for fluid-structure interaction. In Proceedings of the 10th International SPHERIC Workshop. SPHERIC.Google Scholar
Kan, K., Yang, Z., Lyu, P., Zheng, Y. & Shen, L. 2021 Numerical study of turbulent flow past a rotating axial-flow pump based on a level-set immersed boundary method. Renew. Energy 168, 960971.10.1016/j.renene.2020.12.103CrossRefGoogle Scholar
Leis, J.M. & Carson-Ewart, B.M. 1997 In situ swimming speeds of the late pelagic larvae of some Indo-Pacific coral-reef fishes. Mar. Ecol. Prog. Ser. 159, 165174.10.3354/meps159165CrossRefGoogle Scholar
Li, M., Park, S.G., Sotiropoulos, F. & Shen, L. Hydrodynamics and wave energy extraction in passive propulsion of a flexible foil under water surface wave. (https://z.umn.edu/Passive-Foil-2025)Google Scholar
Liao, J.C. 2007 A review of fish swimming mechanics and behaviour in altered flows. Philos. Trans. R. Soc. B. 362(1487), 19731993.10.1098/rstb.2007.2082CrossRefGoogle ScholarPubMed
Liao, J.C., Beal, D.N., Lauder, G.V. & Triantafyllou, M.S. 2003 Fish exploiting vortices decrease muscle activity. Science 302 (5650), 15661569.CrossRefGoogle ScholarPubMed
Liu, K., Liu, X. & Huang, H. 2022 Scaling the self-propulsive performance of pitching and heaving flexible plates. J. Fluid Mech. 936, 9.10.1017/jfm.2022.52CrossRefGoogle Scholar
Liu, P., Liu, Y., Huang, S., Zhao, J. & Su, Y. 2018 Effects of regular waves on propulsion performance of flexible flapping foil. Appl. Sci. 8 (6), 934.10.3390/app8060934CrossRefGoogle Scholar
Lopes, D.B.S., Vaz, G., De Campos, J.F. & Sarmento, A.J.N.A. 2023 Modelling of oscillating foil propulsors in waves. Ocean Engng 268, 113316.Google Scholar
Luhar, M. & Nepf, H.M. 2011 Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnol. Oceanogr. 56 (6), 20032017.10.4319/lo.2011.56.6.2003CrossRefGoogle Scholar
Osher, S. & Fedkiw, R. 2006 Level Set Methods and Dynamic Implicit Surfaces. Springer Science and Business Media.Google Scholar
Park, S.G., Kim, B. & Sung, H.J. 2016 Self-propelled flexible fin in the wake of a circular cylinder. Phys. Fluids 28 (11), 111902.Google Scholar
Park, S.G. & Sung, H.J. 2016 Vortex interaction between two tandem flexible propulsors with a paddling-based locomotion. J. Fluid Mech. 793, 612632.10.1017/jfm.2016.148CrossRefGoogle Scholar
Park, S.G. & Sung, H.J. 2018 Hydrodynamics of flexible fins propelled in tandem, diagonal, triangular and diamond configurations. J. Fluid Mech. 840, 154189.10.1017/jfm.2018.64CrossRefGoogle Scholar
Patel, A. & Bhardwaj, R. 2022 Propulsive performance of a two-dimensional elliptic foil undergoing interlinked pitching and heaving. Phys. Fluids 34 (11), 111904.10.1063/5.0113647CrossRefGoogle Scholar
Peskin, C.S. 2002 The immersed boundary method. Acta Numer. 11, 479517.10.1017/S0962492902000077CrossRefGoogle Scholar
Scherer, J.O. 1968 Experimental and theoretical investigation of large amplitude oscillation foil propulsion systems. Tech. Rep. 662-1.Google Scholar
Sedov, L.I. 1965 Two-Dimensional Problems of Hydrodynamics and Aerodynamics, pp. 1830. Interscience Publishers.Google Scholar
Senturk, U. & Smits, A.J. 2019 Reynolds number scaling of the propulsive performance of a pitching airfoil. AIAA J. 57 (7), 26632669.Google Scholar
Sussman, M. & Puckett, E.G. 2000 A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162 (2), 301337.10.1006/jcph.2000.6537CrossRefGoogle Scholar
Tytell, E.D., Hsu, C.Y., Williams, T.L., Cohen, A.H. & Fauci, L.J. 2010 Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming. Proc. Natl Acad. Sci. USA 107 (46), 1983219837.10.1073/pnas.1011564107CrossRefGoogle Scholar
Van Buren, T., Floryan, D. & Smits, A.J. 2019 Scaling and performance of simultaneously heaving and pitching foils. AIAA J. 57 (9), 36663677.CrossRefGoogle Scholar
Van Buren, T., Floryan, D., Wei, N. & Smits, A.J. 2018 Flow speed has little impact on propulsive characteristics of oscillating foils. Phys. Rev. Fluids 3 (1), 013103.10.1103/PhysRevFluids.3.013103CrossRefGoogle Scholar
Wang, W.Q., Li, W., Yan, Y. & Zhang, J. 2022 Parametric study on the propulsion and energy harvesting performance of a pitching foil hanging under a wave glider. Renew. Energy 184, 830844.CrossRefGoogle Scholar
Weihs, D. 2002 Dynamics of dolphin porpoising revisited. Integr. Comp. Biol. 42 (5), 10711078.10.1093/icb/42.5.1071CrossRefGoogle ScholarPubMed
Williams, T.M., Friedl, W.A. & Haun, J.E. 1993 The physiology of bottlenose dolphins (Tursiops truncatus): heart rate, metabolic rate and plasma lactate concentration during exercise. J. Exp. Biol. 179 (1), 3146.10.1242/jeb.179.1.31CrossRefGoogle ScholarPubMed
Wu, T.Y.T. 1961 Swimming of a waving plate. J. Fluid Mech. 10 (3), 321344.10.1017/S0022112061000949CrossRefGoogle Scholar
Wu, T.Y.T. 1972 Extraction of flow energy by a wing oscillating in waves. J. Ship Res. 16, 6678.CrossRefGoogle Scholar
Yang, Z., Deng, B.Q. & Shen, L. 2018 Direct numerical simulation of wind turbulence over breaking waves. J. Fluid Mech. 850, 120155.10.1017/jfm.2018.466CrossRefGoogle Scholar
Yang, Z., Lu, X.H., Guo, X., Liu, Y. & Shen, L. 2017 Numerical simulation of sediment suspension and transport under plunging breaking waves. Comput. Fluids 158, 5771.Google Scholar
Zheng, K., He, S., Zhao, X., Shen, L. & Zhu, X. 2024 Free-surface-induced ground effect for flapping swimmers. J. Fluid Mech. 997, A36.10.1017/jfm.2024.830CrossRefGoogle Scholar
Zhu, B., Tai, Z., Du, D. & Zhang, J. 2022 Effect of incoming gravity waves on the energy extraction efficiency of flapping wing hydroelectric generators. Ocean Engng 245, 110590.Google Scholar
Zhu, Q., Liu, Y. & Yue, D.K. 2006 Dynamics of a three-dimensional oscillating foil near the free surface. AIAA J. 44 (12), 29973009.10.2514/1.21617CrossRefGoogle Scholar
Zhu, X., He, G. & Zhang, X. 2014 An improved direct-forcing immersed boundary method for fluid-structure interaction simulations. J. Fluids Engng 136 (4), 040903.10.1115/1.4026197CrossRefGoogle Scholar
Supplementary material: File

Ji et al. supplementary material

Ji et al. supplementary material
Download Ji et al. supplementary material(File)
File 2.9 MB