Hostname: page-component-54dcc4c588-smtgx Total loading time: 0 Render date: 2025-10-06T17:43:12.917Z Has data issue: false hasContentIssue false

Effect of radius ratio on the sheared annular centrifugal turbulent convection

Published online by Cambridge University Press:  13 September 2024

Jun Zhong
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing, PR China
Junyi Li*
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing, PR China
Chao Sun*
Affiliation:
New Cornerstone Science Laboratory, Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, 100084 Beijing, PR China Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, 100084 Beijing, PR China
*
Email addresses for correspondence: junyili@mail.tsinghua.edu.cn, chaosun@tsinghua.edu.cn
Email addresses for correspondence: junyili@mail.tsinghua.edu.cn, chaosun@tsinghua.edu.cn

Abstract

We perform linear stability analysis and direct numerical simulations to study the effect of the radius ratio on the instability and flow characteristics of the sheared annular centrifugal Rayleigh–Bénard convection, where the cold inner cylinder and the hot outer cylinder rotate with a small angular velocity difference. With the shear enhancement, the thermal convection is suppressed and finally becomes stable for different radius ratios $\{\eta \in \mathbb {R}|0.2\leqslant \eta \le 0.95\}$. Considering the inhomogeneous distribution of shear stresses in the base flow, a new global Richardson number $Ri_g$ is defined and the marginal-state curves for different radius ratios are successfully unified in the parameter domain of $Ri_g$ and the Rayleigh number $Ra$. The results are consistent with the marginal-state curve of the wall-sheared classical Rayleigh–Bénard convection in the streamwise direction, demonstrating that the basic stabilization mechanisms are identical. Moreover, systems with small radius ratios exhibit greater geometric asymmetry. On the one hand, this results in a smaller equivalent aspect ratio for the system, accommodating fewer convection roll pairs; fewer roll pairs are more likely to cause a transition in the flow structure during shear enhancement. On the other hand, the shear distribution is more inhomogeneous, allowing for an outward shift of the convection region and the elevation of bulk temperature under strong shear.

Information

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.10.1103/RevModPhys.81.503CrossRefGoogle Scholar
Ali, M. & Weidman, P.D. 1990 On the stability of circular Couette flow with radial heating. J. Fluid Mech. 220, 5384.CrossRefGoogle Scholar
Bayly, B.J. 1988 Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows. Phys. Fluids 31 (1), 5664.10.1063/1.867002CrossRefGoogle Scholar
Blass, A., Tabak, P., Verzicco, R., Stevens, R.J.A.M. & Lohse, D. 2021 The effect of Prandtl number on turbulent sheared thermal convection. J. Fluid Mech. 910, A37.CrossRefGoogle Scholar
Blass, A., Zhu, X., Verzicco, R., Lohse, D. & Stevens, R.J.A.M. 2020 Flow organization and heat transfer in turbulent wall sheared thermal convection. J. Fluid Mech. 897, A22.CrossRefGoogle ScholarPubMed
Bradshaw, P. 1969 The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech. 36 (1), 177191.10.1017/S0022112069001583CrossRefGoogle Scholar
Busse, F. 2012 The twins of turbulence research. Physics 5, 4.CrossRefGoogle Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35 (7), 58.10.1140/epje/i2012-12058-1CrossRefGoogle ScholarPubMed
Deardorff, J.W. 1965 Gravitational instability between horizontal plates with shear. Phys. Fluids 8 (6), 10271030.10.1063/1.1761351CrossRefGoogle Scholar
Deardorff, J.W. 1972 Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci. 29 (1), 91115.2.0.CO;2>CrossRefGoogle Scholar
Drazin, P.G. & Reid, W.H. 2004 Hydrodynamic Stability, 2nd edn. Cambridge University Press.10.1017/CBO9780511616938CrossRefGoogle Scholar
Ecke, R.E. & Shishkina, O. 2023 Turbulent rotating Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 55, 603638.CrossRefGoogle Scholar
Eckhardt, B., Grossmann, S. & Lohse, D. 2000 Scaling of global momentum transport in Taylor–Couette and pipe flow. Eur. Phys. J. B 18 (3), 541544.CrossRefGoogle Scholar
Eckhardt, B., Grossmann, S. & Lohse, D. 2007 Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.10.1017/S0022112007005629CrossRefGoogle Scholar
Feng, L., Liu, C., Köhl, A. & Wang, F. 2022 Seasonality of four types of baroclinic instability in the global oceans. J. Geophys. Res.: Oceans 127 (5), e2022JC018572.CrossRefGoogle Scholar
Goluskin, D., Johnston, H., Flierl, G.R. & Spiegel, E.A. 2014 Convectively driven shear and decreased heat flux. J. Fluid Mech. 759, 360385.10.1017/jfm.2014.577CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.10.1017/S0022112099007545CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2011 Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23 (4), 045108.10.1063/1.3582362CrossRefGoogle Scholar
Grossmann, S., Lohse, D. & Sun, C. 2016 High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48 (1), 5380.CrossRefGoogle Scholar
Guo, X.-L., Wu, J.-Z., Wang, B.-F., Zhou, Q. & Chong, K.L. 2023 Flow structure transition in thermal vibrational convection. J. Fluid Mech. 974, A29.10.1017/jfm.2023.666CrossRefGoogle Scholar
Huisman, S.G., Lohse, D. & Sun, C. 2013 Statistics of turbulent fluctuations in counter-rotating Taylor–Couette flows. Phys. Rev. E 88 (6), 063001.10.1103/PhysRevE.88.063001CrossRefGoogle ScholarPubMed
Jiang, H., Wang, D., Liu, S. & Sun, C. 2022 Experimental evidence for the existence of the ultimate regime in rapidly rotating turbulent thermal convection. Phys. Rev. Lett. 129 (20), 204502.CrossRefGoogle ScholarPubMed
Jiang, H., Zhu, X., Wang, D., Huisman, S.G. & Sun, C. 2020 Supergravitational turbulent thermal convection. Sci. Adv. 6 (40), eabb8676.CrossRefGoogle ScholarPubMed
Kang, C., Meyer, A., Mutabazi, I. & Yoshikawa, H.N. 2017 Radial buoyancy effects on momentum and heat transfer in a circular Couette flow. Phys. Rev. Fluids 2 (5), 053901.10.1103/PhysRevFluids.2.053901CrossRefGoogle Scholar
Kang, C., Yang, K.-S. & Mutabazi, I. 2015 Thermal effect on large-aspect-ratio Couette–Taylor system: numerical simulations. J. Fluid Mech. 771, 5778.CrossRefGoogle Scholar
Khanna, S. & Brasseur, J.G. 1998 Three-dimensional buoyancy- and shear-induced local structure of the atmospheric boundary layer. J. Atmos. Sci. 55 (5), 710743.2.0.CO;2>CrossRefGoogle Scholar
Leng, X.-Y., Krasnov, D., Li, B.-W. & Zhong, J.-Q. 2021 Flow structures and heat transport in Taylor–Couette systems with axial temperature gradient. J. Fluid Mech. 920, A42.CrossRefGoogle Scholar
Leng, X.-Y. & Zhong, J.-Q. 2022 Mutual coherent structures for heat and angular momentum transport in turbulent Taylor–Couette flows. Phys. Rev. Fluid 7 (4), 043501.10.1103/PhysRevFluids.7.043501CrossRefGoogle Scholar
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42 (1), 335364.10.1146/annurev.fluid.010908.165152CrossRefGoogle Scholar
Meyer, A., Yoshikawa, H.N. & Mutabazi, I. 2015 Effect of the radial buoyancy on a circular Couette flow. Phys. Fluids 27 (11), 114104.10.1063/1.4935804CrossRefGoogle Scholar
Niemela, J.J., Skrbek, L., Sreenivasan, K.R. & Donnelly, R.J. 2001 The wind in confined thermal convection. J. Fluid Mech. 449, 169178.10.1017/S0022112001006310CrossRefGoogle Scholar
Ostilla, R., Stevens, R.J.A.M., Grossmann, S., Verzicco, R. & Lohse, D. 2013 Optimal Taylor–Couette flow: direct numerical simulations. J. Fluid Mech. 719, 1446.CrossRefGoogle Scholar
Ostilla-Monico, R., van der Poel, E.P., Verzicco, R., Grossmann, S. & Lohse, D. 2014 Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech. 761, 126.10.1017/jfm.2014.618CrossRefGoogle Scholar
Pitz, D.B., Marxen, O. & Chew, J.W. 2017 Onset of convection induced by centrifugal buoyancy in a rotating cavity. J. Fluid Mech. 826, 484502.CrossRefGoogle Scholar
van der Poel, E.P., Ostilla-Mónico, R., Donners, J. & Verzicco, R. 2015 A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids 116, 1016.10.1016/j.compfluid.2015.04.007CrossRefGoogle Scholar
Silano, G., Sreenivasan, K.R. & Verzicco, R. 2010 Numerical simulations of Rayleigh–Bénard convection for Prandtl numbers between $10^{{-1}}$ and $10^{{4}}$ and Rayleigh numbers between $10^{{5}}$ and $10^{{9}}$. J. Fluid Mech. 662, 409446.10.1017/S0022112010003290CrossRefGoogle Scholar
Sun, C., Xia, K.-Q. & Tong, P. 2005 Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell. Phys. Rev. E 72 (2), 026302.10.1103/PhysRevE.72.026302CrossRefGoogle Scholar
Verzicco, R. & Orlandi, P. 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123 (2), 402414.10.1006/jcph.1996.0033CrossRefGoogle Scholar
Vincze, M., Harlander, U., von Larcher, Th. & Egbers, C. 2014 An experimental study of regime transitions in a differentially heated baroclinic annulus with flat and sloping bottom topographies. Nonlinear Process. Geophys. 21 (1), 237250.CrossRefGoogle Scholar
Wang, C., Jiang, L.-f., Jiang, H.-C., Sun, C. & Liu, S. 2021 Heat transfer and flow structure of two-dimensional thermal convection over ratchet surfaces. J. Hydrodyn. 33 (5), 970978.10.1007/s42241-021-0086-9CrossRefGoogle Scholar
Wang, D., Jiang, H., Liu, S., Zhu, X. & Sun, C. 2022 Effects of radius ratio on annular centrifugal Rayleigh–Bénard convection. J. Fluid Mech. 930, A19.10.1017/jfm.2021.889CrossRefGoogle Scholar
Wang, D., Liu, J., Zhou, Q. & Sun, C. 2023 Statistics of temperature and velocity fluctuations in supergravitational convective turbulence. Acta Mechanica Sin. 39, 122387.10.1007/s10409-022-22387-xCrossRefGoogle Scholar
Xi, H.-D., Lam, S. & Xia, K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 4756.10.1017/S0022112004008079CrossRefGoogle Scholar
Xia, K.-Q. 2013 Current trends and future directions in turbulent thermal convection. Theor. Appl. Mech. Lett. 3 (5), 052001.10.1063/2.1305201CrossRefGoogle Scholar
Yoshikawa, H.N., Meyer, A., Crumeyrolle, O. & Mutabazi, I. 2015 Linear stability of a circular Couette flow under a radial thermoelectric body force. Phys. Rev. E 91 (3), 033003.10.1103/PhysRevE.91.033003CrossRefGoogle Scholar
Yoshikawa, H.N., Nagata, M. & Mutabazi, I. 2013 Instability of the vertical annular flow with a radial heating and rotating inner cylinder. Phys. Fluids 25 (11), 114104.10.1063/1.4829429CrossRefGoogle Scholar
Zhang, S. & Sun, C. 2024 Twin forces: similarity between rotation and stratification effects on wall turbulence. J. Fluid Mech. 979, A45.10.1017/jfm.2023.1101CrossRefGoogle Scholar
Zhong, J., Wang, D. & Sun, C. 2023 From sheared annular centrifugal Rayleigh–Bénard convection to radially heated Taylor–Couette flow: exploring the impact of buoyancy and shear on heat transfer and flow structure. J. Fluid Mech. 972, A29.CrossRefGoogle Scholar
Zhu, X., et al. 2018 AFiD-GPU: a versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters. Comput. Phys. Commun. 229, 199210.10.1016/j.cpc.2018.03.026CrossRefGoogle Scholar