Hostname: page-component-cb9f654ff-9knnw Total loading time: 0 Render date: 2025-08-22T15:52:20.970Z Has data issue: false hasContentIssue false

Derivatives PerformanceAttribution

Published online by Cambridge University Press:  06 April 2009

Abstract

This paper shows how to decompose the dollar profitearned from an option into two basic components: i)mispricing of the option relative to the asset atthe time of purchase; and ii) profit from subsequentfortuitous changes or mispricing of the underlyingasset. This separation hinges on measuring the “truerelative value” of the option from its realizedpayoff. The payoff from any one option has a hugestandard error about this value that can be reducedby averaging the payoff from several independentoption positions. Simulations indicate that 95%reductions in standard errors can be furtherachieved by using the payoff of a dynamicreplicating porfolio as a Monte Carlo controlvariate. In addition, the paper shows that these lowstandard errors are robust to discrete rather thancontinuous dynamic replication and to the likelydegree of misspecification of the benchmark formulaused to implement the replication.

Option mispricing profit can be futher decomposed intoprofit due to superior estimation of the volatility(volatility profit) and profitfrom using a superior option valuation formula(formula profit). To make thisdecomposition reiably, the benchmark formula usedfor the attribution needs to be similar to theformula implicitly used by the market to priceoptions. If so, then simulation indicates that thisfurther decomposition can be achieved with lowstandard errors. Basic component ii) can be furtherdecomposed into profit from a forward contract ofthe underlying asset (asset profit)and what I term pure option profit. The asset profitindicates whether the investor was skillful bybuying or selling options on mispriced underlyingassets. However, asset profit could also simply bejust compensation for bearing risk—a distinctionbeyond the scope of this paper. Although simulationindicates that the attrivution procedure gives anunbiased allocation of the option profit to thissource, its standard error is large—a feature commonwith others' attempts to measure performance ofasssets.

Information

Type
Research Article
Copyright
Copyright © School of Business Administration, University of Washington 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

Haas School of Business, University ofCalifornia, Berkeley, CA 94720. The author thanksBarra, Inc. for encouraging this research.

References

Cox, J. C.; Ross, S. A. and Rubinstein, M.. “Option Pricing: A Simplified Approach.” Journal of Financial Economics, 7 (09 1979), 229263.10.1016/0304-405X(79)90015-1CrossRefGoogle Scholar
Galai, D.The Components of the Return form Hedging Options against Stocks.” Journal of Business, 56 (01 1983), 4554.10.1086/296185CrossRefGoogle Scholar
Rubinstein, M.Implied Binomial Trees.” Journal of Finance, 49 (07 1994), 771818.10.2307/2329207CrossRefGoogle Scholar
Rubinstein, M.Edgeworth Binomial Trees.” Jouenal of Derivatives, 5 (Spring 1998), 2027.10.3905/jod.1998.407994CrossRefGoogle Scholar