Hostname: page-component-54dcc4c588-sdd8f Total loading time: 0 Render date: 2025-10-13T07:51:00.811Z Has data issue: false hasContentIssue false

Maternal iron deficiency alters the expression of glucose transporters in offspring

Published online by Cambridge University Press:  13 October 2025

Misaki Furuta*
Affiliation:
Department of Health and Nutrition, Faculty of Health Management, Nagasaki International University, Sasebo, Nagasaki, Japan
Shunsuke Fujii
Affiliation:
Department of Health and Nutrition, Faculty of Health Management, Nagasaki International University, Sasebo, Nagasaki, Japan
Madoka Kumai
Affiliation:
Department of Health and Nutrition, Faculty of Health Management, Nagasaki International University, Sasebo, Nagasaki, Japan
*
Corresponding author: Misaki Furuta; Email: furuta@niu.ac.jp

Abstract

Iron deficiency anemia is a major health problem worldwide. Iron is an essential micronutrient in the human body; its demand increases with fetal growth and gestation. Although it has been reported that glucose metabolism is also affected by iron deficiency, only few studies have investigated the influence of iron deficiency during gestation and in offspring. In this study, glucose metabolism in newborns was investigated in terms of maternal iron deficiency prior to pregnancy in a rat model. Briefly, rats were divided into control (CL) and iron deficiency (ID) groups. The levels of serum glucose and insulin and the protein expression of liver GLUT2 in neonates born to dams in the ID group increased. In contrast, the mRNA and protein expression levels of GLUT2 and GLUT4 in the skeletal muscle tended to decrease. In addition, the expression of p-Akt (Thr308), which is involved in GLUT4 membrane translocation, decreased, suggesting that GLUT4 translocation to the plasma membrane may not have been sufficiently promoted. These results suggest that maternal iron deficiency may influence glucose metabolism in neonates and potentially increase the risk of developing metabolic abnormalities and lifestyle-related diseases later in life.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press in association with The International Society for Developmental Origins of Health and Disease (DOHaD)

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Hanson, MA, Gluckman, PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev. 2014; 94, 10271076.10.1152/physrev.00029.2013CrossRefGoogle ScholarPubMed
Butel, MJ, Waligora-Dupriet, AJ, Wydau-Dematteis, S. The developing gut microbiota and its consequences for health. J Dev Orig Health Dis. 2018; 9, 590597.10.1017/S2040174418000119CrossRefGoogle ScholarPubMed
Black, RE, Victora, CG, Walker, SP, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013; 382, 427451.10.1016/S0140-6736(13)60937-XCrossRefGoogle ScholarPubMed
Arabzadeh, H, Doosti-Irani, A, Kamkari, S, Farhadian, M, Elyasi, E, Mohammadi, Y. The maternal factors associated with infant low birth weight: an umbrella review. Bmc Pregnancy Childb. 2024; 24, 316.10.1186/s12884-024-06487-yCrossRefGoogle ScholarPubMed
Okwaraji, YB, Krasezec, J, Bradley, E, et al. National, regional, and global estimates of low birthweight in 2020, with trends from 2000: a systematic analysis. Lancet. 2024; 403, 10711080.10.1016/S0140-6736(23)01198-4CrossRefGoogle ScholarPubMed
Godfrey, KM, Barker, DJ. Fetal programming and adult health. Public Health Nutr. 2001; 4, 611624.10.1079/PHN2001145CrossRefGoogle ScholarPubMed
Bertram, CE, Hanson, MA. Animal models and programming of the metabolic syndrome. Br Med Bull. 2001; 60, 103121.10.1093/bmb/60.1.103CrossRefGoogle ScholarPubMed
Frieden, E. The ferrous to ferric cycles in iron metabolism. Nutr Rev. 1973; 31, 4144.10.1111/j.1753-4887.1973.tb05977.xCrossRefGoogle ScholarPubMed
Zimmermann, MB, Hurrell, RF. Nutritional iron deficiency. Lancet. 2007; 370, 511520.10.1016/S0140-6736(07)61235-5CrossRefGoogle ScholarPubMed
Joshi, K, Nair, S, Khade, C, Rajan, MG. Early gestation screening of pregnant women for iodine deficiency disorders and iron deficiency in Urban centre in Vadodara, Gujarat, India. J Dev Orig Health Dis. 2014; 5, 6368.10.1017/S2040174413000470CrossRefGoogle Scholar
Rees, WD, Hay, SM, Hayes, HE, Stevens, VJ, Gambling, L, McArdle, HJ. Iron deficiency during pregnancy and lactation modifies the fatty acid composition of the brain of neonatal rats. J Dev Orig Health Dis. 2020; 11, 264272.10.1017/S2040174419000552CrossRefGoogle ScholarPubMed
Rajpathak, SN, Crandall, JP, Wylie-Rosett, J, Kabat, GC, Rohan, TE, Hu, FB. The role of iron in type 2 diabetes in humans. Biochim Biophys Acta. 2009; 1790, 671681.10.1016/j.bbagen.2008.04.005CrossRefGoogle ScholarPubMed
Sun, L, Franco, OH, Hu, FB, et al. Ferritin concentrations, metabolic syndrome, and type 2 diabetes in middle-aged and elderly Chinese. J Clin Endocrinol Metab. 2008; 93, 46904696.10.1210/jc.2008-1159CrossRefGoogle ScholarPubMed
Tonai, S, Kawabata, A, Nakanishi, T, et al. Iron deficiency induces female infertile in order to failure of follicular development in mice. J Reprod Dev. 2020; 66, 475483.10.1262/jrd.2020-074CrossRefGoogle ScholarPubMed
Brooks, GA, Henderson, SA, Dallman, PR. Increased glucose dependence in resting, iron-deficient rats. Am J Physiol. 1987; 253, E461E466.Google ScholarPubMed
Thorens, B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia. 2015; 58, 221232.10.1007/s00125-014-3451-1CrossRefGoogle ScholarPubMed
Chadt, A, Al-Hasani, H. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch. 2020; 472, 12731298.10.1007/s00424-020-02417-xCrossRefGoogle ScholarPubMed
Iynedjian, PB. Molecular physiology of Mammalian Glucokinase. Cell Mol Life Sci. 2009; 66, 2742.10.1007/s00018-008-8322-9CrossRefGoogle ScholarPubMed
Ueda-Wakagi, M, Mukai, R, Fuse, N, Mizushina, Y, Ashida, H. 3-O-Acyl-epicatechins increase glucose uptake activity and GLUT4 translocation through activation of PI3K signaling in skeletal muscle cells. Int J Mol Sci. 2015; 16, 1628816299.10.3390/ijms160716288CrossRefGoogle ScholarPubMed
Manning, BD, Toker, A. AKT/PKB signaling: navigating the network. Cell. 2017; 169, 381405.10.1016/j.cell.2017.04.001CrossRefGoogle ScholarPubMed
Gan, KX, Wang, C, Chen, JH, Zhu, CJ, Song, GY. Mitofusin-2 ameliorates high-fat diet-induced insulin resistance in liver of rats. World J Gastroenterol. 2013; 19, 15721581.10.3748/wjg.v19.i10.1572CrossRefGoogle ScholarPubMed
Kang, L, Routh, VH, Kuzhikandathil, EV, Gaspers, LD, Levin, BE. Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes. 2004; 53, 549559.10.2337/diabetes.53.3.549CrossRefGoogle ScholarPubMed
Langnaese, K, John, R, Schweizer, H, Ebmeyer, U, Keilhoff, G. Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model. BMC Mol Biol. 2008; 9, 53.10.1186/1471-2199-9-53CrossRefGoogle Scholar
Finch, CA, Huebers, HA, Miller, LR, Josephson, BM, Shepard, TH, Mackler, B. Fetal iron balance in the rat. Am J Clin Nutr. 1983; 37, 910917.10.1093/ajcn/37.6.910CrossRefGoogle ScholarPubMed
Sangkhae, V, Fisher, AL, Ganz, T, Nemeth, E. Iron homeostasis during pregnancy: maternal, placental, and fetal regulatory mechanisms. Annu Rev Nutr. 2023; 43, 279300.10.1146/annurev-nutr-061021-030404CrossRefGoogle ScholarPubMed
Gell, DA. Structure and function of haemoglobins. Blood Cells Mol Dis. 2018; 70, 1342.10.1016/j.bcmd.2017.10.006CrossRefGoogle ScholarPubMed
Woodman, AG, Care, AS, Mansour, Y, et al. Modest and severe maternal iron deficiency in pregnancy are associated with fetal Anaemia and organ-specific hypoxia in Rats. Sci Rep. 2017; 7, 46573.10.1038/srep46573CrossRefGoogle ScholarPubMed
Reinke, C, Bevans-Fonti, S, Grigoryev, DN. Chronic intermittent hypoxia induces lung growth in adult mice. Am J Physiol Lung Cell Mol Physiol. 2010; 300, L266L273.10.1152/ajplung.00239.2010CrossRefGoogle ScholarPubMed
Pankoke, S, Schweitzer, T, Bikker, R, et al. Obesity impacts hypoxia adaptation of the lung. Am J Physiol Lung Cell Mol Physiol. 2023; 325, L352L359.10.1152/ajplung.00125.2023CrossRefGoogle ScholarPubMed
Allen, LH. Anemia and iron deficiency: effects on pregnancy outcome. Am J Clin Nutr. 2000; 71(5 Suppl), 1280s1284s.10.1093/ajcn/71.5.1280sCrossRefGoogle ScholarPubMed
Alwan, NA, Hamamy, H. Maternal iron status in pregnancy and long term health outcomes in the offspring. J Pediatr Genet. 2015; 4, 111123.Google ScholarPubMed
Hubbard, AC, Bandyopadhyay, S, Wojczyk, BS, Spitalnik, SL, Hod, EA, Prestia, KA. Effect of dietary iron on fetal growth in pregnant mice. Comp Med. 2013; 63, 127135.Google ScholarPubMed
De Blasio, MJ, Gatford, KL, Harland, ML, Robinson, JS, Owens, JA. Placental restriction reduces insulin sensitivity and expression of insulin signaling and glucose transporter genes in skeletal muscle, but not liver, in young sheep. Endocrinology. 2012; 153, 21422151.10.1210/en.2011-1955CrossRefGoogle Scholar
Gambling, L, Dunford, S, Wallace, DI, et al. Iron deficiency during pregnancy affects postnatal blood pressure in the rat. J Physiol. 2003; 552, 603610.10.1113/jphysiol.2003.051383CrossRefGoogle ScholarPubMed
Kadowaki, T, Yamauchi, T. Adiponectin and adiponectin receptors. Endocr Rev. 2005; 26, 439451.10.1210/er.2005-0005CrossRefGoogle ScholarPubMed
Yamauchi, T, Kamon, J, Ito, Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003; 423, 762769.10.1038/nature01705CrossRefGoogle ScholarPubMed
Kadowaki, T, Yamauchi, T, Kubota, N, Hara, K, Ueki, K, Tobe, K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006; 116, 17841792.10.1172/JCI29126CrossRefGoogle ScholarPubMed
Limesand, SW, Rozance, PJ, Smith, D, Hay, WW Jr. Increased insulin sensitivity and maintenance of glucose utilization rates in fetal sheep with placental insufficiency and intrauterine growth restriction. Am J Physiol Endocrinol Metab. 2007; 293, E1716E1725.10.1152/ajpendo.00459.2007CrossRefGoogle ScholarPubMed
Lane, RH, MacLennan, NK, Hsu, JL, Janke, SM, Pham, TD. Increased hepatic peroxisome proliferator-activated receptor-gamma coactivator-1 gene expression in a rat model of intrauterine growth retardation and subsequent insulin resistance. Endocrinology. 2002; 143, 24862490.10.1210/endo.143.7.8898CrossRefGoogle Scholar
Narkewicz, MR, Carver, TD, Hay, WW Jr. Induction of cytosolic phosphoenolpyruvate carboxykinase in the ovine fetal liver by chronic fetal hypoglycemia and hypoinsulinemia. Pediatr Res. 1993; 33, 493496.10.1203/00006450-199305000-00014CrossRefGoogle ScholarPubMed
Thorn, SR, Sekar, SM, Lavezzi, JR, et al. A physiological increase in insulin suppresses gluconeogenic gene activation in fetal sheep with sustained hypoglycemia. Am J Physiol Regul Integr Comp Physiol. 2012; 303, R861R869.10.1152/ajpregu.00331.2012CrossRefGoogle ScholarPubMed
Rozance, PJ, Limesand, SW, Barry, JS, et al. Chronic late-gestation hypoglycemia upregulates hepatic PEPCK associated with increased PGC1alpha mRNA and phosphorylated CREB in fetal sheep. Am J Physiol Endocrinol Metab. 2008; 294, E365E370.10.1152/ajpendo.00639.2007CrossRefGoogle ScholarPubMed
Chacko, SK, Ordonez, J, Sauer, PJ, Sunehag, AL. Gluconeogenesis is not regulated by either glucose or insulin in extremely low birth weight infants receiving total parenteral nutrition. J Pediatr. 2011; 158, 891896.10.1016/j.jpeds.2010.12.040CrossRefGoogle ScholarPubMed
Chacko, SK, Sunehag, AL. Gluconeogenesis continues in premature infants receiving total parenteral nutrition. Arch Dis Child Fetal Neonatal Ed. 2010; 95, F413F418.10.1136/adc.2009.178020CrossRefGoogle ScholarPubMed
Yamamoto, T, Fukumoto, H, Koh, G, et al. Liver and muscle-fat type glucose transporter gene expression in obese and diabetic rats. Biochem Biophys Res Commun. 1991; 175, 9951002.10.1016/0006-291X(91)91663-WCrossRefGoogle ScholarPubMed
Lan, X, Cretney, EC, Kropp, J, et al. Maternal diet during pregnancy induces gene expression and DNA methylation changes in fetal tissues in sheep. Front. Genet. 2013; 4, 49.10.3389/fgene.2013.00049CrossRefGoogle ScholarPubMed
Maclennan, NK, James, SJ, Melnyk, S, et al. Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats. Physiol Genomics. 2004; 18, 4350.10.1152/physiolgenomics.00042.2004CrossRefGoogle ScholarPubMed
Swali, A, McMullen, S, Hayes, H, Gambling, L, McArdle, HJ, Langley-Evans, SC. Processes underlying the nutritional programming of embryonic development by iron deficiency in the rat. PLoS ONE. 2012; 7, e48133.10.1371/journal.pone.0048133CrossRefGoogle ScholarPubMed
Cheng, Z, Teo, G, Krueger, S, et al. Differential dynamics of the mammalian mRNA and protein expression response to misfolding stress. Mol Sys Biol. 2016; 12, 885.Google ScholarPubMed
Burcelin, R, Eddouks, M, Kande, J, Assan, R, Girard, J. Evidence that GLUT-2 mRNA and protein concentrations are decreased by hyperinsulinaemia and increased by hyperglycaema in liver of diabetic rats. Biochem J. 1992; 288, 675679.10.1042/bj2880675CrossRefGoogle Scholar
Yoon, JC, Puigserver, P, Chen, G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001; 413, 131138.10.1038/35093050CrossRefGoogle ScholarPubMed
Zisman, A, Peroni, OD, Abel, ED, et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med. 2000; 6, 924928.10.1038/78693CrossRefGoogle ScholarPubMed
Kim, JK, Zisman, A, Fillmore, JJ, et al. Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. J 1Clin Invest. 2001; 108, 153160.10.1172/JCI10294CrossRefGoogle ScholarPubMed
Zhang, M, Li, X, Liang, H, et al. Semen cassiae extract improves glucose metabolism by promoting GlUT4 translocation in the skeletal muscle of diabetic rats. Front Pharmacol. 2018; 9, 235.10.3389/fphar.2018.00235CrossRefGoogle ScholarPubMed
Muhlhausler, BS, Duffield, JA, Ozanne, SE, et al. The transition from fetal growth restriction to accelerated postnatal growth: a potential role for insulin signalling in skeletal muscle. J Physiol. 2009; 587, 41994211.10.1113/jphysiol.2009.173161CrossRefGoogle ScholarPubMed
Yamagishi, H, Komabayashi, T. Alteration of glucose metabolism and increased fructosamine in iron-deficiency anemic rats. Nutr Res. 2003; 23, 15471553.10.1016/S0271-5317(03)00159-3CrossRefGoogle Scholar
Tsirka AE, Gruetzmacher EM, Kelley DE, Ritov VH, Devaskar SU, Lane RH. Myocardial gene expression of glucose transporter 1 and glucose transporter 4 in response to uteroplacental insufficiency in the rat. J Endocrinol. 2001; 169, 373380.10.1677/joe.0.1690373CrossRefGoogle Scholar