Hostname: page-component-cb9f654ff-r5d9c Total loading time: 0 Render date: 2025-08-28T08:57:07.318Z Has data issue: false hasContentIssue false

Effects of (-)-epicatechin in cardiac hypertrophy of male rats obese by programing

Published online by Cambridge University Press:  06 August 2025

Leticia Orozco-Arguelles
Affiliation:
Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Ciudad de México, México
Sergio De los Santos
Affiliation:
Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Ciudad de México, México
Ramón M Coral-Vázquez
Affiliation:
Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México Subdirección de Enseñanza e Investigación, Centro Médico Nacional “20 de Noviembre”, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
Claudia Cecilia Vega-García
Affiliation:
Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Ciudad de México, México
Elena Zambrano
Affiliation:
Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Ciudad de México, México Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
Patricia Canto*
Affiliation:
Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Ciudad de México, México
*
Corresponding author: Patricia Canto; Email: ipcanto@unam.mx; ipcanto@yahoo.com.mx

Abstract

The obesogenic maternal environment can lead to cardiac hypertrophy in the offspring. The aim of this study was to investigate whether (-)-epicatechin (Epi) modify the expression of genes related to pathological cardiac hypertrophy (CH), and its physiological pathway, in offspring obese by programing. Four groups of eight male offspring Wistar rats of 110 days were randomly selected to control groups [C and offspring of maternal obesity (MO)] or to Epi groups (C + Epi or MO + Epi). In heart tissue, we evaluated the size of the ventricular walls and cavities, presence of fibrosis, mRNA and protein of Myh6, Myh7, Anp, Bnp, Acta 1, Col1a1, Akt, and Mtor. We observed an increase of the heart weight/body ratio in groups treated with Epi. Only in MO group, heart area and its perimeter were increased, as well as Myh7 and Anp mRNA. We found a significant decrease of fibrosis area in male offspring treatment with Epi. In Epi group Anp mRNA was decreased whilst Anp protein in MO group was increased; further, a decrease in Col1a1 protein was found in MO group. In conclusion, the maternal obesity activates pathological CH markers reactivating fetal cardiac genes involved in histological changes observed in cardiac tissue. Epi treatment decreased the content of collagen area and expression of some fetal cardiac genes participating in this pathway in offspring of maternal obesity.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press in association with The International Society for Developmental Origins of Health and Disease (DOHaD)

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Chan, RS, Woo, J. Prevention of overweight and obesity: how effective is the current public health approach. Int J Environ Res Public Health. 2010; 7, 765783.CrossRefGoogle Scholar
Smith, KB, Smith, MS. Obesity Statistics. Prim Care. 2016; 43, 121135 ix.10.1016/j.pop.2015.10.001CrossRefGoogle ScholarPubMed
Zambrano, E, Ibáñez, C, Martínez-Samayoa, PM, Lomas-Soria, C, Durand-Carbajal, M, Rodríguez-González, GL. Maternal obesity: lifelong metabolic outcomes for offspring from poor developmental trajectories during the perinatal period. Arch Med Res. 2016; 47, 112.10.1016/j.arcmed.2016.01.004CrossRefGoogle ScholarPubMed
De los Santos, S, Coral-Vázquez, RM, Menjivar, M, et al. (-)-Epicatechin modifies body composition of the male offspring of obese rats. J Funct Foods. 2019; 58, 367373.10.1016/j.jff.2019.05.014CrossRefGoogle Scholar
Alfaradhi, MZ, Ozanne, SE. Developmental programming in response to maternal overnutrition. Front Genet. 2011; 2, 27.10.3389/fgene.2011.00027CrossRefGoogle ScholarPubMed
Godfrey, KM, Reynolds, RM, Prescott, SL, et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 2017; 5, 5364.10.1016/S2213-8587(16)30107-3CrossRefGoogle ScholarPubMed
Collins, KH, Herzog, W, MacDonald, GZ, et al. Obesity, Metabolic syndrome, and musculoskeletal disease: common inflammatory pathways suggest a central role for loss of muscle integrity. Front Physiol. 2018; 9, 112.CrossRefGoogle ScholarPubMed
Kotsis, V, Jordan, J, Micic, D, et al. Obesity and cardiovascular risk: a call for action from the European society of hypertension working group of obesity, diabetes and the high-risk patient and European association for the study of obesity: part A: mechanisms of obesity induced hypertension, diabetes and dyslipidemia and practice guidelines for treatment. J Hypertens. 2018; 36, 14271440.10.1097/HJH.0000000000001730CrossRefGoogle Scholar
De Jong, KA, Barrand, S, Wood-Bradley, RJ, et al. Maternal high fat diet induces early cardiac hypertrophy and alters cardiac metabolism in Sprague Dawley rat offspring. Nutr Metab Cardiovasc Dis. 2018; 28, 600609.10.1016/j.numecd.2018.02.019CrossRefGoogle ScholarPubMed
Loche, E, Blackmore, HL, Carpenter, AA, et al. Maternal diet-induced obesity programmes cardiac dysfunction in male mice independently of post-weaning diet. Cardiovasc Res. 2018; 114, 13721384.10.1093/cvr/cvy082CrossRefGoogle ScholarPubMed
Heineke, J, Molkentin, JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006; 7, 589600.10.1038/nrm1983CrossRefGoogle ScholarPubMed
Hill, JA, Olson, EN. Cardiac plasticity. N Engl J Med. 2008; 358, 13701380.10.1056/NEJMra072139CrossRefGoogle ScholarPubMed
Tham, YK, Bernardo, BC, Ooi, JY, Weeks, KL, McMullen, JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol. 2015; 89, 14011438.10.1007/s00204-015-1477-xCrossRefGoogle ScholarPubMed
Taubert, D, Berkels, R, Roesen, R, Klaus, W. Chocolate and blood pressure in elderly individuals with isolated systolic hypertension. JAMA. 2003; 290, 10291030.10.1001/jama.290.8.1029CrossRefGoogle ScholarPubMed
Schroeter, H, Heiss, C, Balzer, J, et al. (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A. 2006; 103, 10241029.10.1073/pnas.0510168103CrossRefGoogle ScholarPubMed
Ramirez-Sanchez, I, Maya, L, Ceballos, G, Villarreal, F. (-)-Epicatechin activation of endothelial cell endothelial nitric oxide synthase, nitric oxide, and related signaling pathways. Hypertension. 2010; 55, 13981405.10.1161/HYPERTENSIONAHA.109.147892CrossRefGoogle ScholarPubMed
Nogueira, L, Ramirez-Sanchez, I, Perkins, GA, et al. (-)-Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle. J Physiol. 2011; 589, 46154631.CrossRefGoogle ScholarPubMed
Ramirez-Sanchez, I, Aguilar, H, Ceballos, G, Villarreal, F. (-)-Epicatechin-induced calcium independent eNOS activation: roles of HSP90 and AKT. Mol Cell Biochem. 2012; 370, 141150.10.1007/s11010-012-1405-9CrossRefGoogle ScholarPubMed
De Los Santos, S, García-Pérez, V, Hernández-Reséndiz, S, et al. (-)-Epicatechin induces physiological cardiac growth by activation of the PI3K/Akt pathway in mice. Mol Nutr Food Res. 2017; 61, 110.10.1002/mnfr.201600343CrossRefGoogle ScholarPubMed
De Los Santos, S, Palma-Flores, C, Zentella-Dehesa, A, Canto, P, Coral-Vázquez, RM. (-)-Epicatechin inhibits development of dilated cardiomyopathy in δ sarcoglycan null mouse. Nutr Metab Cardiovasc Dis. 2018; 28, 11881195.CrossRefGoogle Scholar
De Los Santos, S, Reyes-Castro, LA, Coral-Vázquez, RM, Mendez, JP, Zambrano, E, Canto, P. (-)-Epicatechin increases apelin/APLNR expression and modifies proteins involved in lipid metabolism of offspring descendants of maternal obesity. J Nutr Biochem. 2023; 117, 109350.CrossRefGoogle ScholarPubMed
Gardner, JD, Brower, GL, Voloshenyuk, TG, Janicki, JS. Cardioprotection in female rats subjected to chronic volume overload: synergistic interaction of estrogen and phytoestrogens. Am J Physiol Heart Circ Physiol. 2008; 294, H198H204.10.1152/ajpheart.00281.2007CrossRefGoogle ScholarPubMed
Kershaw, O, Heblinski, N, Lotz, F, Dirsch, O, Gruber, AD. Diagnostic value of morphometry in feline hypertrophic cardiomyopathy. J Comp Pathol. 2012; 147, 7383.10.1016/j.jcpa.2011.11.196CrossRefGoogle ScholarPubMed
Chin, A, Holm, JM, Duignan, IJ, et al. Aging and Cardiovascular Angiogenesis Models. In Handbook of Models for Human Aging. (eds. Conn, PM, Benjamin, SA, Finch, CE, Guerin, JC, Nelson, JF, Olshansky, SJ, Roth, G, Smiths, RG). 1rt ed. 2006: pp. 937945.CrossRefGoogle Scholar
Catalano, P, deMouzon, SH. Maternal obesity and metabolic risk to the offspring: why lifestyle interventions may have not achieved the desired outcomes. Int J Obes (Lond). 2015; 39, 642649.Google Scholar
Lecoutre, S, Petrus, P, Rydén, M, Breton, C. Transgenerational epigenetic mechanisms in adipose tissue development. Trends Endocrinol Metab. 2018; 29, 675685.10.1016/j.tem.2018.07.004CrossRefGoogle ScholarPubMed
Kereliuk, SM, Dolinsky, VW. Recent experimental studies of maternal obesity, diabetes during pregnancy and the developmental origins of cardiovascular disease. Int J Mol Sci. 2022; 23, 4467.10.3390/ijms23084467CrossRefGoogle ScholarPubMed
Jiménez, R, Duarte, J, Perez-Vizcaino, F. Epicatechin: endothelial function and blood pressure. J Agric Food Chem. 2012; 60, 88238830.10.1021/jf205370qCrossRefGoogle ScholarPubMed
Galleano, M, Bernatova, I, Puzserova, A, et al. (-)-Epicatechin reduces blood pressure and improves vasorelaxation in spontaneously hypertensive rats by NO-mediated mechanism. IUBMB Life. 2013; 65, 710715.10.1002/iub.1185CrossRefGoogle ScholarPubMed
Basso, C, Michaud, K, d’Amati, G, et al. Cardiac hypertrophy at autopsy. Virchows Arch. 2021; 479, 7994.CrossRefGoogle ScholarPubMed
Ahmed, A, Liang, M, Chi, L, et al. Maternal obesity persistently alters cardiac progenitor gene expression and programs adult-onset heart disease susceptibility. Mol Metab. 2021; 43, 101116.10.1016/j.molmet.2020.101116CrossRefGoogle ScholarPubMed
McMullen, JR, Shioi, T, Zhang, L, et al. Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci U S A. 2003; 100, 1235512360.10.1073/pnas.1934654100CrossRefGoogle Scholar
Shioi, T, Kang, PM, Douglas, PS, et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J. 2000; 19, 25372548.10.1093/emboj/19.11.2537CrossRefGoogle ScholarPubMed
McMullen, JR, Jennings, GL. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol. 2007; 34, 255262.CrossRefGoogle ScholarPubMed
Bernardo, BC, Weeks, KL, Pretorius, L, McMullen, JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther. 2010; 128, 191227.CrossRefGoogle ScholarPubMed
Tardiff, JC, Hewett, TE, Factor, SM, Vikstrom, KL, Robbins, J, Leinwand, LA. Expression of the beta (slow)-isoform of MHC in the adult mouse heart causes dominant-negative functional effects. Am J Physiol Heart Circ Physiol. 2000; 278, H412H419.CrossRefGoogle ScholarPubMed
Gupta, MP. Factors controlling cardiac myosin-isoform shift during hypertrophy and heart failure. J Mol Cell Cardiol. 2007; 43, 388403.10.1016/j.yjmcc.2007.07.045CrossRefGoogle ScholarPubMed
Sadoshima, J, Izumo, S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol. 1997; 59, 551571.10.1146/annurev.physiol.59.1.551CrossRefGoogle ScholarPubMed
Baron, DA, Lofton, CE, Newman, WH, Currie, MG. Atriopeptin inhibition of thrombin-mediated changes in the morphology and permeability of endothelial monolayers. Proc Natl Acad Sci U S A. 1989; 86, 33943398.10.1073/pnas.86.9.3394CrossRefGoogle ScholarPubMed
Chopra, S, Cherian, D, Verghese, PP, Jacob, JJ. Physiology and clinical significance of natriuretic hormones. Indian J Endocrinol Metab. 2013; 17, 8390.Google ScholarPubMed
Yamazaki, KG, Romero-Perez, D, Barraza-Hidalgo, M, et al. Short- and long-term effects of (-)-epicatechin on myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2008; 295, H761H767.10.1152/ajpheart.00413.2008CrossRefGoogle Scholar
Moreno-Ulloa, A, Cid, A, Rubio-Gayosso, I, Ceballos, G, Villarreal, F, Ramirez-Sanchez, I. Effects of (-)-epicatechin and derivatives on nitric oxide mediated induction of mitochondrial proteins. Bioorg Med Chem Lett. 2013; 23, 44414446.10.1016/j.bmcl.2013.05.079CrossRefGoogle ScholarPubMed
da Rocha, AL, Teixeira, GR, Pinto, AP, et al. Excessive training induces molecular signs of pathologic cardiac hypertrophy. J Cell Physiol. 2018; 233, 88508861.10.1002/jcp.26799CrossRefGoogle ScholarPubMed
Yan, Z, Zeng, N, Li, J, Liao, T, Ni, G. Cardiac effects of treadmill running at different intensities in a rat model. Front Physiol. 2021; 12, 774681.10.3389/fphys.2021.774681CrossRefGoogle ScholarPubMed
Kong, P, Christia, P, Frangogiannis, NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014; 71, 549574.10.1007/s00018-013-1349-6CrossRefGoogle ScholarPubMed
Fan, D, Takawale, A, Lee, J, Kassiri, Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair. 2012; 5, 15.10.1186/1755-1536-5-15CrossRefGoogle ScholarPubMed
Luo, Y, Lu, J, Wang, Z, et al. Small ubiquitin-related modifier (SUMO)ylation of SIRT1 mediates (-)-epicatechin inhibited- differentiation of cardiac fibroblasts into myofibroblasts. Pharm Biol. 2022; 60, 17621770.10.1080/13880209.2022.2101672CrossRefGoogle ScholarPubMed
Gaillard, R. Maternal obesity during pregnancy and cardiovascular development and disease in the offspring. Eur J Epidemiol. 2015; 30, 11411152.10.1007/s10654-015-0085-7CrossRefGoogle ScholarPubMed
Kankowski, L, Ardissino, M, McCracken, C, et al. The impact of maternal obesity on offspring cardiovascular health: a systematic literature review. Front Endocrinol (Lausanne). 2022; 13, 868441.10.3389/fendo.2022.868441CrossRefGoogle ScholarPubMed
Supplementary material: File

Orozco-Arguelles et al. supplementary material 1

Orozco-Arguelles et al. supplementary material
Download Orozco-Arguelles et al. supplementary material 1(File)
File 360 KB
Supplementary material: File

Orozco-Arguelles et al. supplementary material 2

Orozco-Arguelles et al. supplementary material
Download Orozco-Arguelles et al. supplementary material 2(File)
File 142.2 KB
Supplementary material: File

Orozco-Arguelles et al. supplementary material 3

Orozco-Arguelles et al. supplementary material
Download Orozco-Arguelles et al. supplementary material 3(File)
File 274.8 KB
Supplementary material: File

Orozco-Arguelles et al. supplementary material 4

Orozco-Arguelles et al. supplementary material
Download Orozco-Arguelles et al. supplementary material 4(File)
File 174.2 KB