Hostname: page-component-54dcc4c588-mz6gc Total loading time: 0 Render date: 2025-10-13T03:43:29.123Z Has data issue: false hasContentIssue false

Effect of feeding increasing levels of whole cottonseed on milk production, milk components and milk fatty acid profile in lactating dairy goats

Published online by Cambridge University Press:  08 August 2025

Tássia Martins
Affiliation:
Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Belo Horizonte, MG, Brasil
Maria Ferreira
Affiliation:
Embrapa Caprinos e Ovinos, Núcleo Regional Sudeste, Coronel Pacheco, MG, Brazil
Hemilly de Sá
Affiliation:
Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Belo Horizonte, MG, Brasil
Eduardo Duarte
Affiliation:
Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Montes Claros, MG, Brasil
Matheus Abreu
Affiliation:
Programa de Pós-graduação em Ciência Animal, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
Débora Soares
Affiliation:
Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Belo Horizonte, MG, Brasil
Luciano de Lima*
Affiliation:
Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Belo Horizonte, MG, Brasil
Iran Borges
Affiliation:
Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Belo Horizonte, MG, Brasil
*
Corresponding author: Luciano De Lima; Email: lucianodelima@ufmg.br

Abstract

We assessed the feeding behavior, intake, apparent total tract digestibility, blood parameters, milk yield, milk composition and milk fatty acid profile in dairy goats fed diets containing increasing levels of whole cottonseed (WCS), specifically a control diet with no WCS and diets containing 120, 150 and 180 g WCS/kg DM. Eight lactating dairy goats were distributed in a replicated 4 × 4 Latin square design with four 21-day periods. Rumination and total chewing time increased linearly with WCS inclusion levels. However, no effects on dry matter intake or digestibility were observed. Milk production was similar among treatments, but milk fat and lactose concentration increased linearly with WCS dietary levels, as did monounsaturated and polyunsaturated FA and conjugated linoleic acid concentration in milk fat. This study demonstrates that increasing the inclusion of WCS in the diets of dairy goats offers potential nutritional benefits without negatively impacting intake, digestibility or ruminal fermentation. Notably, WCS-enhanced diets led to improved milk fat composition, with increased concentrations of beneficial FA. These results support the use of WCS as an effective feed ingredient to enhance milk quality in dairy goats, leveraging both the high-energy content and fiber structure of WCS, which promotes rumen health and function without reducing DMI. Dairy goat producers can incorporate up to 180 g WCS/kg DM in diets to produce milk with a healthier fat profile, potentially enhancing its marketability.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Albenzio, M, Santillo, A, Avondo, M, Nudda, A, Chessa, S, Pirisi, A and Banni, S (2016) Nutritional properties of small ruminant food products and their role on human health. Small Ruminant Research 135, 312. doi:10.1016/j.smallrumres.2015.12.016CrossRefGoogle Scholar
Almeida, OC, Ferraz, MVC, Susin, I, Gentil, RS, Polizel, DM, Ferreira, EM, Barroso, JPR and Pires, AV (2019) Plasma and milk fatty acid profiles in goats fed diets supplemented with oils from soybean, linseed or fish. Small Ruminant Research 170, 125130. doi:10.1016/j.smallrumres.2018.11.002CrossRefGoogle Scholar
Antonacci, LE, Bussetti, M, Rodriguez, AM, Cano, AV and Gagliostro, GA (2018) Effect of Diet Supplementation with Combinations of Soybean and Linseed Oils on Milk Production and Fatty Acid Profile in Lactating Dairy Ewes. Agricultural Sciences 09, 200220. doi:10.4236/as.2018.92015CrossRefGoogle Scholar
AOAC (2000) Official methods of analysis. In Association of Official Analytical Chemists. 17th. Arlington, VA, USA: AOAC.Google Scholar
Bauman, DE and Griinari, JM (2001) Regulation and nutritional manipulation of milk fat: low-fat milk syndrome. Livestock Production Science 70, 1529. doi:10.1016/S0301-6226(01)00195-6CrossRefGoogle Scholar
Bauman, DE, Perfield, JW, Harvatine, KJ and Baumgard, LH (2008) Regulation of fat synthesis by conjugated linoleic acid: lactation and the ruminant model. Journal of Nutrition 138, 403409. doi:10.1093/jn/138.2.403CrossRefGoogle ScholarPubMed
Bernard, L, Shingfield, KJ, Rouel, J, Ferlay, A and Chilliard, Y (2009)Effect of plant oils in the diet on performance and milk fatty acid composition in goats fed diets based on grass hay or maize silage. British Journal of Nutrition 101, 213224. doi:10.1017/S0007114508006533CrossRefGoogle ScholarPubMed
Breckenridge, WC and Kuksis, A (1968) Specific distribution of short-chain fatty acids in molecular distillates of bovine milk fat. Journal of Lipid Research. 9, 388393. doi:10.1016/S0022-2275(20)43109-8CrossRefGoogle ScholarPubMed
Cadorniga-Valino, C, Grummer, RR, Armentano, LE, Donkin, SS and Bertics, SJ (1997) Effects of fatty acids and hormones on fatty acid metabolism and gluconeogenesis in bovine hepatocytes. Journal of Dairy Science 80, 646656. doi:10.3168/jds.S0022-0302(97)75983-6CrossRefGoogle ScholarPubMed
Chilliard, Y and Ferlay, A (2004) Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reproduction Nutrition Development 44, 467492. doi:10.1051/rnd:2004052CrossRefGoogle ScholarPubMed
Chilliard, Y, Ferlay, A, Rouel, J and Lamberet, G (2003) A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. Journal of Dairy Science 86, 17511770. doi:10.3168/jds.S0022-0302(03)73761-8CrossRefGoogle ScholarPubMed
Chilliard, Y, Glasser, F, Ferlay, A, Bernard, L, Rouel, J and Doreau, M (2007) Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. European Journal of Lipid Science and Technology 109, 828855. doi:10.1002/ejlt.200700080CrossRefGoogle Scholar
Chouinard, PY, Corneau, L, Saebø, A and Bauman, DE (1999) Milk yield and composition during abomasal infusion of conjugated linoleic acids in dairy cows. Journal of Dairy Science 82, 27372745. doi:10.3168/jds.S0022-0302(99)75530-XCrossRefGoogle ScholarPubMed
Christie, WW (1982) A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. Journal of Lipid Research. 23, 10721075. doi:10.1016/S0022-2275(20)38081-0CrossRefGoogle ScholarPubMed
Cruz-Hernandez, C, Kramer, JKG, Kennelly, JJ, Glimm, DR, Sorensen, BM, Okine, EK, Goonewardene, LA and Weselake, RJ (2007) Evaluating the conjugated linoleic acid and Trans 18:1 isomers in milk fat of dairy cows fed increasing amounts of sunflower oil and a constant level of fish oil. Journal of Dairy Science 90, 37863801. doi:10.3168/jds.2006-698CrossRefGoogle Scholar
De Andrade, PVD and Schmidely, P (2006) Effect of duodenal infusion of trans10,cis12-CLA on milk performance and milk fatty acid profile in dairy goats fed high or low concentrate diet in combination with rolled canola seed. Reproduction Nutrition Development 46, 3148. doi:10.1051/rnd:2005062CrossRefGoogle ScholarPubMed
den Hartigh, LJ (2019) Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: a Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients 11, 370399. doi:10.3390/nu11020370CrossRefGoogle ScholarPubMed
Devendra, C and Lewis, D (1974) The interaction between dietary lipids and fibre in the sheep 2. Digestibility studies. Animal Science 19, 6776. doi:10.1017/S0003356100022583CrossRefGoogle Scholar
Ferreira, GCA, Santos, PD, Zangirolami, MS, Alfcs, F, da, SGAR, Basso, EA and Santos, OO (2024) Comparative analysis of the fatty acid composition in human, cow and goat milk and their interpositional distribution in triacylglycerols. Química Nova 48, 16.Google Scholar
García, MA, Aguilera, JF and Alcaide, EM (1995) Voluntary intake and kinetics of degradation and passage of unsupplemented and supplemented pastures from semiarid lands in grazing goats and sheep. Livestock Production Science 44, 245255. doi:10.1016/0301-6226(95)00076-3CrossRefGoogle Scholar
Ghazal, S, Berthelot, V, Friggens, NC and Schmidely, P (2014) Effects of conjugated linoleic acid supplementation and feeding level on dairy performance, milk fatty acid composition, and body fat changes in mid-lactation goats. Journal of Dairy Science 97, 71627174. doi:10.3168/jds.2014-8364CrossRefGoogle ScholarPubMed
Giger-Reverdin, S, Domange, C, Broudiscou, LP, Sauvant, D and Berthelot, V (2020) Rumen function in goats, an example of adaptive capacity. Journal of Dairy Research 87, 4551. doi:10.1017/S0022029920000060CrossRefGoogle ScholarPubMed
Glasser, F, Schmidely, P, Sauvant, D and Doreau, M (2008) Digestion of fatty acids in ruminants: a meta-analysis of flows and variation factors: 2. C18 fatty acids. Animal 2, 691704. doi:10.1017/S1751731108002036CrossRefGoogle ScholarPubMed
Gómez-Cortés, P, Juárez, M and Angel De La Fuente, M (2018) Milk fatty acids and potential health benefits: an updated vision doi:10.1016/j.tifs.2018.08.014CrossRefGoogle Scholar
Hadjigeorgiou, IE, Gordon, IJ and Milne, JA (2003) Intake, digestion and selection of roughage with different staple lengths by sheep and goats. Small Ruminant Research 47, 117132. doi:10.1016/S0921-4488(02)00242-0CrossRefGoogle Scholar
Harvatine, KJ, Boisclair, YR and Bauman, DE (2009) Recent advances in the regulation of milk fat synthesis. Animal : An International Journal of Animal Bioscience 3, 4054.CrossRefGoogle ScholarPubMed
Holt, C (1983) Swelling of Golgi vesicles in mammary secretory cells and its relation to the yield and quantitative composition of milk. Journal of Theoretical Biology 101, 247261. doi:10.1016/0022-5193(83)90339-9CrossRefGoogle Scholar
Ide, T, Kobayashi, H, Ashakumary, L, Rouyer, IA, Takahashi, Y, Aoyama, T, Hashimoto, T and Mizugaki, M (2000) Comparative effects of perilla and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver. Biochimica Et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 1485, 2335. doi:10.1016/S1388-1981(00)00026-3CrossRefGoogle ScholarPubMed
Ikeda, I, Cha, JY, Yanagita, T, Nakatani, N, Oogami, K, Imaizumi, K and Yazawa, K (1998) Effects of dietary alpha-linolenic, eicosapentaenoic and docosahexaenoic acids on hepatic lipogenesis and beta-oxidation in rats. Biosci Biothechnol Biochem 62, 675680. doi:10.1271/bbb.62.675CrossRefGoogle ScholarPubMed
Jenkins, TC and Palmquist, DL (1984) Effect of Fatty Acids or Calcium Soaps on Rumen and Total Nutrient Digestibility of Dairy Rations1. Journal of Dairy Science 67, 978986. doi:10.3168/jds.S0022-0302(84)81396-XCrossRefGoogle ScholarPubMed
Lima, LS, Palin, M-F, Santos, GT, Benchaar, C, Lima, LCR, Chouinard, PY and Petit, HV (2014) Effect of flax meal on the production performance and oxidative status of dairy cows infused with flax oil in the abomasum. Livestock Science 170, 5362. doi:10.1016/j.livsci.2014.09.023CrossRefGoogle Scholar
Lourenço, M, Ramos-Morales, E and Wallace, RJ (2010) The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 4, 10081023. doi:10.1017/S175173111000042XCrossRefGoogle ScholarPubMed
Månsson, HL (2008) Fatty acids in bovine milk fat. Food and Nutrition Research 52, 13.Google ScholarPubMed
Marín, ALM, Sánchez, NN, Sigler, AIG, Blanco, FP, García, VD and Ruipérez, FH (2015) Meta-analysis of the use of oilseeds and oils in ewe and goat diets. Pesquisa Agropecuaria Brasileira 50, 821828. doi:10.1590/S0100-204X2015000900011CrossRefGoogle Scholar
Mavrommatis, A and Tsiplakou, E (2020) The impact of the dietary supplementation level with Schizochytrium sp. on milk chemical composition and fatty acid profile, of both blood plasma and milk of goats. Small Ruminant Research 193, p. 106252. doi:10.1016/j.smallrumres.2020.106252CrossRefGoogle Scholar
Mertens, DR (2002)Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International 85, 12171240. doi:10.1093/jaoac/85.6.1217CrossRefGoogle ScholarPubMed
Mooney, CS and Allen, MS (1997) Physical Effectiveness of the Neutral Detergent Fiber of Whole Linted Cottonseed Relative to that of Alfalfa Silage at Two Lengths of Cut. Journal of Dairy Science 80, 20522061. doi:10.3168/jds.S0022-0302(97)76150-2CrossRefGoogle ScholarPubMed
Moore, JA, Swingle, RS and Hale, WH (1986) Effects of whole cottonseed, cottonseed oil or animal fat on digestibility of wheat straw diets by steers. Journal of Animal Science 63, 12671273. doi:10.2527/jas1986.6341267xCrossRefGoogle ScholarPubMed
Myers, WD, Ludden, PA, Nayigihugu, V and Hess, BW (2004)Technical note: a procedure for the preparation and quantitative analysis of samples for titanium dioxide. Journal of Animal Science 82, 179183. doi:10.2527/2004.821179xCrossRefGoogle ScholarPubMed
NASEM (2021) Nutrient Requirements of Dairy Cattle: Eighth Revised Edition. Washington, DC: The National Academies Press. doi:10.17226/25806.Google Scholar
NRC (2007) Nutrient Requirements of Small Ruminants: sheep, Goats, Cervids, and New World Camelids. Washington, DC: The National Academies Press. doi:10.17226/11654Google Scholar
Orzuna-Orzuna, JF, Chay-Canul, AJ and Lara-Bueno, A (2023) Performance, milk fatty acid profile and oxidative status of lactating small ruminants supplemented with microalgae: a meta-analysis. Small Ruminant Research 226, p. 107031. doi:10.1016/j.smallrumres.2023.107031CrossRefGoogle Scholar
Petit, HV (2002)Digestion, milk production, milk composition, and blood composition of dairy cows fed whole flaxseed. Journal of Dairy Science 85, 14821490. doi:10.3168/jds.S0022-0302(02)74217-3CrossRefGoogle ScholarPubMed
Petit, HV and Côrtes, C (2010) Milk production and composition, milk fatty acid profile, and blood composition of dairy cows fed whole or ground flaxseed in the first half of lactation. Animal Feed Science and Technology 158, 3643. doi:10.1016/j.anifeedsci.2010.03.013CrossRefGoogle Scholar
Pierce, RB, Adeniji, YA, Bomberger, R, Goodall, SR and Harvatine, KJ (2023) Effect of feeding increasing levels of whole cottonseed on milk and milk components, milk fatty acid profile, and total tract digestibility in lactating dairy cows. Journal of Dairy Science 107, 29162929.CrossRefGoogle ScholarPubMed
Salfer, IJ, Morelli, MC, Ying, Y, Allen, MS and Harvatine, KJ (2018) The effects of source and concentration of dietary fiber, starch, and fatty acids on the daily patterns of feed intake, rumination, and rumen pH in dairy cows. Journal of Dairy Science 101, 1091110921. doi:10.3168/jds.2018-15071CrossRefGoogle ScholarPubMed
Sauvant, D, Giger-Reverdin, S, Archimède, H and Baumont, R (2008) Modelling relationships between chewing activities in ruminants, dietary characteristics and digestion. In INRA – Institut de l'Elevage (Eds), 15èmes Rencontres Autour Des Recherches Sur Les Ruminants. INRA, Paris, France. 331334.Google Scholar
Schlecht, E, Richter, H, Fernandez-Rivera, S and Becker, K (2007) Gastrointestinal passage of Sahelian roughages in cattle, sheep and goats, and implications for livestock-mediated nutrient transfers. Animal Feed Science and Technology 137, 93114.CrossRefGoogle Scholar
Shingfield, KJ, Bernard, L, Leroux, C and Chilliard, Y (2010) Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Animal: An International Journal of Animal Bioscience 4, 11401166.CrossRefGoogle ScholarPubMed
Suárez-Vega, A, Gutiérrez-Gil, B, Toral, PG, Hervás, G, Arranz, JJ and Frutos, P (2019) Conjugated linoleic acid (CLA)-induced milk fat depression: application of RNA-Seq technology to elucidate mammary gene regulation in dairy ewes. Scientific Reports 9, 19. doi:10.1038/s41598-019-40881-3CrossRefGoogle ScholarPubMed
Toral, PG, Chilliard, Y, Rouel, J, Leskinen, H, Shingfield, KJ and Bernard, L (2015) Comparison of the nutritional regulation of milk fat secretion and composition in cows and goats. Journal of Dairy Science 98, 72777297. doi:10.3168/jds.2015-9649CrossRefGoogle Scholar
Toral, PG, Rouel, J, Bernard, L and Chilliard, Y (2014)Interaction between fish oil and plant oils or starchy concentrates in the diet: effects on dairy performance and milk fatty acid composition in goats. Animal Feed Science and Technology 198, 6782. doi:10.1016/j.anifeedsci.2014.09.019CrossRefGoogle Scholar
Van Soest, PJ, Robertson, JB and Lewis, BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597. doi:10.3168/jds.S0022-0302(91)78551-2CrossRefGoogle ScholarPubMed
Ward, JK, Tefft, CW, Sirny, RJ, Edwards, HN and Tillman, AD (1957) Further studies concerning the effect of alfalfa ash upon the utilization of low-quality roughages by ruminant animals. Journal of Animal Science 16, 633641. doi:10.1093/ansci/16.3.633CrossRefGoogle Scholar
Watkins, PJ, Jaborek, JR, Teng, F, Day, L, Castada, HZ, Baringer, S and Wick, M (2021) Branched chain fatty acids in the flavour of sheep and goat milk and meat: a review. Small Ruminant Research 200, p. 106398. doi:10.1016/j.smallrumres.2021.106398CrossRefGoogle Scholar
Wolff, RL, Bayard, CC and Fabien, RJ (1995) Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis ontrans-18:1 acids. Application to the study of seasonal variations in French butters. Journal of the American Oil Chemists’ Society 72, 14711483. doi:10.1007/BF02577840CrossRefGoogle Scholar
Yener, S, Pacheco-Pappenheim, S, Heck, JML and van Valenberg, HJF (2021) Seasonal variation in the positional distribution of fatty acids in bovine milk fat. Journal of Dairy Science 104, 1227412285. doi:10.3168/jds.2021-20570CrossRefGoogle ScholarPubMed
Supplementary material: File

Martins et al. supplementary material

Martins et al. supplementary material
Download Martins et al. supplementary material(File)
File 154.9 KB