Hostname: page-component-54dcc4c588-sq2k7 Total loading time: 0 Render date: 2025-10-04T00:37:31.924Z Has data issue: false hasContentIssue false

Effect of bovine lactoferrin and lactoferrin-derived peptides on planktonic cells and abiotic surface biofilms of Salmonella enterica

Published online by Cambridge University Press:  18 August 2025

Uriel A. Angulo-Zamudio
Affiliation:
School of Medicine, Autonomous University of Sinaloa, Culiacan, SI, Mexico
Adrian Canizalez-Roman
Affiliation:
School of Medicine, Autonomous University of Sinaloa, Culiacan, SI, Mexico The Women's Hospital, Secretariat of Health, Culiacan, SI, Mexico
Hector Flores-Villaseñor
Affiliation:
School of Medicine, Autonomous University of Sinaloa, Culiacan, SI, Mexico The Sinaloa State Public Health Laboratory, Secretariat of Health, Culiacan, SI, Mexico
Jan G.M. Bolscher
Affiliation:
Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, Netherlands
Kamran Nazmi
Affiliation:
Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, Netherlands
Claudia Leon-Sicairos
Affiliation:
Integral Postgraduate Program in Biotechnology, FCQB, Autonomous University of Sinaloa, Culiacan, SI, Mexico
Erika Acosta-Smith
Affiliation:
School of Medicine, Autonomous University of Sinaloa, Culiacan, SI, Mexico
Laura E. Quintero-Martínez
Affiliation:
Integral Postgraduate Program in Biotechnology, FCQB, Autonomous University of Sinaloa, Culiacan, SI, Mexico
Nidia León-Sicairos*
Affiliation:
School of Medicine, Autonomous University of Sinaloa, Culiacan, SI, Mexico Pediatric Hospital of Sinaloa, Culiacan, SI, Mexico
*
Corresponding author: Nidia León-Sicairos; Email: nidialeon@uas.edu.mx

Abstract

Salmonella enterica is a Gram-negative bacterium responsible approximately for 155,000 deaths annually. S. enterica is one of the most important foodborne pathogens, affecting mainly people in developed countries. The human immune system produces antibacterial peptides and proteins like lactoferrin (LF). This work addresses the hypothesis that bovine lactoferrin (bLF) and its derivative peptides bLactoferricin17-30, bD-Lactoferricin17-30, bLactoferrampin265-284, bD-Lactoferrampin265-284 and bLF-chimera have antimicrobial activity on planktonic cells and pre-formed biofilms of S. enterica. Planktonic Salmonella enterica ATCC 14028 were treated with bLF and bLF-peptides for two hours, and bacterial viability was determined by counting colony-forming units/ml. In addition, S. enterica biofilms were pre-formed or established on an abiotic surface, and viability or disruption was assessed in the presence of bLF and bLF-peptides by counting colony-forming units/ml or using the live/dead viability kit. We observed that bLF and bLF-peptides were bactericidal against planktonic S. enterica, killing more than 80% of cultures after two hours of treatment. The bactericidal effect was concentration and time-dependent. In addition, bLF, bLFampin165-284, and bLF-chimera showed an anti-biofilm effect against Salmonella biofilms pre-formed during 8 and 12 hours on the abiotic surface, disorganizing more than 50% of the biofilms after 4 or 6 hours of treatment. We conclude that bLF and its peptides show antimicrobial activity against planktonic cells and pre-formed biofilms of S. enterica on abiotic surfaces and could potentially be a therapeutic solution to combat Salmonella infections.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abraham, WR (2006) Controlling biofilms of gram-positive pathogenic bacteria. Current Medicinal Chemistry 13, 15091524.CrossRefGoogle ScholarPubMed
Acosta-Smith, E, Viveros-Jiménez, K, Canizalez-Román, A, Reyes-Lopez, M, Bolscher, JGM, Nazmi, K, Flores-Villaseñor, H, Alapizco-Castro, G, de la Garza, M, Martínez-Garcia, JJ, Velazquez-Roman, J and Leon-Sicairos, N (2018) Bovine lactoferrin and lactoferrin-derived peptides inhibit the growth of Vibrio cholerae and other Vibrio species. Frontiers in Microbiology 8, 2633.CrossRefGoogle ScholarPubMed
Agbaje, M, Begum, RH, Oyekunle, MA, Ojo, OE and Adenubi, OT (2011) Evolution of Salmonella nomenclature: a critical note. Folia Microbiolica 56, 497503.CrossRefGoogle ScholarPubMed
Aguilar-Diaz, H, Canizalez-Roman, A, Nepomuceno-Mejia, T, Gallardo-Vera, F, Hornelas-Orozco, Y, Nazmi, K, Bolscher, JG, Carrero, JC, Leon-Sicairos, C and Leon-Sicairos, N (2017) Parasiticidal effect of synthetic bovine lactoferrin peptides on the enteric parasite Giardia intestinalis. Biochemistry Cellular Biology 95, 8290.CrossRefGoogle ScholarPubMed
Alba, P, Leekitcharoenphon, P, Carfora, V, Amoruso, R, Cordaro, G, Di Matteo, P, Ianzano, A, Iurescia, M, Diaconu, EL, Study Group, EN, Pedersen, SK, Guerra, B, Hendriksen, RS, Franco, A and Battisti, A (2020) Molecular epidemiology of Salmonella infantis in Europe: insights into the success of the bacterial host and its parasitic pESI-like megaplasmid. Microbial Genomics 6. doi:10.1099/mgen.0.000365CrossRefGoogle ScholarPubMed
Almehdar, HA, Abd El-Baky, N, Mattar, EH, Albiheyri, R, Bamagoos, A, Aljaddawi, A, Uversky, VN and Redwan, EM (2023) Exploring the mechanisms by which camel lactoferrin can kill Salmonella enterica serovar typhimurium and Shigella sonnei. PeerJournal 11, e14809.Google ScholarPubMed
Almehdar, HA, El-Baky, NA, Alhaider, AA, Almuhaideb, SA, Alhaider, AA, Albiheyri, RS, Uversky, VN and Redwan, EM (2020) Bacteriostatic and bactericidal activities of camel lactoferrins against Salmonella enterica serovar typhi. Probiotics Antimicrob. Proteins 12, 1831.CrossRefGoogle ScholarPubMed
Ammons, MC and Copié, V (2013) Mini-review: lactoferrin: a bioinspired, anti-biofilm therapeutic. Biofouling 29, 443455.CrossRefGoogle ScholarPubMed
Angulo-Zamudio, UA, Vidal, JE, Nazmi, K, Bolscher, JGM, Leon-Sicairos, C, Antezana, BS, Canizalez-Roman, A and León-Sicairos, N (2019) Lactoferrin disaggregates pneumococcal biofilms and inhibits acquisition of resistance through its DNase activity. Frontiers in Microbiology 10, 2386.CrossRefGoogle ScholarPubMed
Aslam, B, Khurshid, M, Arshad, MI, Muzammil, S, Rasool, M, Yasmeen, N, Shah, T, Chaudhry, TH, Rasool, MH, Shahid, A, Xueshan, X and Baloch, Z (2021) Antibiotic resistance: one health one world outlook). Frontiers in Cellular and Infectious Microbiology 11, 771510.CrossRefGoogle ScholarPubMed
Bai, X, Teng, D, Tian, Z, Zhu, Y, Yang, Y and Wang, J (2010) Contribution of bovine lactoferrin inter-lobe region to iron binding stability and antimicrobial activity against Staphylococcus aureus. Biometals 23, 431439.CrossRefGoogle ScholarPubMed
Baker, EN and Baker, HM (2009) A structural framework for understanding the multifunctional character of lactoferrin. Biochimie 91, 310.CrossRefGoogle ScholarPubMed
Band, V and Weiss, D (2015) Mechanisms of antimicrobial peptide resistance in Gram-negative bacteria. Antibiotics (Basel) 4, 1841.CrossRefGoogle ScholarPubMed
Barreto Arce, LJ, Contreras García, CA, Durand Vara, D and Ochoa Woodell, T (2016) Bovine lactoferrin decreases the invasion of Salmonella enterica to HEp-2 cells. Reviews of Gastroenterology Peru 36, 304307.Google ScholarPubMed
Besser, JM (2018) Salmonella epidemiology: a whirlwind of change. Food Microbiology 71, 5559.CrossRefGoogle ScholarPubMed
Biernbaum, EN, Gnezda, A, Akbar, S, Franklin, R, Venturelli, PA and McKillip, JL (2021) Lactoferrin as an antimicrobial against Salmonella enterica and Escherichia coli O157:H7 in raw milk. Journal of Dairy Science Communicationsn 2, 9297.Google Scholar
Bolscher, J, Nazmi, K, van Marle, J, van ‘t Hof, W and Veerman, E (2012) Chimerization of lactoferricin and lactoferrampin peptides strongly potentiates the killing activity against Candida albicans. Biochemical Cell Biology 90, 378388.CrossRefGoogle ScholarPubMed
Del Olmo, A, Calzada, J and Nuñez, M (2010) Short communication: antimicrobial effect of lactoferrin and its amidated and pepsin-digested derivatives against Salmonella enteritidis and Pseudomonas fluorescens. Journal of Dairy Science 93, 39653969.CrossRefGoogle ScholarPubMed
Dougan, G and Baker, S (2014) Salmonella enterica serovar typhi and the pathogenesis of typhoid fever. Annual Reviews of Microbiology 68, 317336.CrossRefGoogle ScholarPubMed
Drago-Serrano, ME, de la Garza-amaya, M, Luna, JS and Campos-Rodríguez, R (2012) Lactoferrin-lipopolysaccharide (LPS) binding as key to antibacterial and antiendotoxic effects. International Immunopharmacology 12, 19.CrossRefGoogle ScholarPubMed
Evangelopoulou, G, Kritas, S, Govaris, A and Burriel, AR (2014) Pork meat as a potential source of Salmonella enterica subsp. arizonae infection in humans. Journal of Clinical Microbiology 52, 741744.CrossRefGoogle ScholarPubMed
Flores-Villaseñor, H, Canizalez-Román, A, Reyes-Lopez, M, Nazmi, K, de la Garza, M, Zazueta-Beltrán, J, León-Sicairos, N and Bolscher, JG (2010) Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli. Biometals 23, 569578.Google ScholarPubMed
Garai, P, Gnanadhas, DP and Chakravortty, D (2012) Salmonella enterica serovars typhimurium and typhi as model organisms: revealing paradigm of host-pathogen interactions. Virulence 3, 377388.CrossRefGoogle ScholarPubMed
García-Vello, P, González-Zorn, B and Setsoafia Saba, CK (2020) Antibiotic resistance patterns in human, animal, food and environmental isolates in Ghana: a review. Pan African Medical Journal 35, 37.CrossRefGoogle Scholar
Gharieb, RM, Tartor, YH and Khedr, MH (2015) Non-typhoidal salmonella in poultry meat and diarrhoeic patients: prevalence, antibiogram, virulotyping, molecular detection and sequencing of class I integrons in multidrug resistant strains. Gut Pathology 7, 34.CrossRefGoogle Scholar
Gourkhede, DP, Bhoomika, S, Pathak, R, Yadav, JP, Nishanth, D, Vergis, J, Malik, SVS, Barbuddhe, SB and Rawool, DB (2020) Antimicrobial efficacy of Cecropin A (1-7)- melittin and lactoferricin (17-30) against multi-drug resistant Salmonella enteritidis. Microbial Pathology 147, 104405.CrossRefGoogle ScholarPubMed
Grimont, PA (2008) A brief history of the French Society for Microbiology. Research in Microbiology 159, 4044.CrossRefGoogle ScholarPubMed
Huang, YK, Chen, SY, Wong, MY, Chiu, CH and Chu, C (2019) Pathogenicity differences of Salmonella enterica serovars typhimurium, enteritidis, and choleraesuis-specific virulence plasmids and clinical S. choleraesuis strains with large plasmids to the human THP-1 cell death. Microbial Pathology 128, 6974.CrossRefGoogle Scholar
Huertas Mendez, NJ, Vargas Casanova, Y, Gomez Chimbi, AK, Hernandez, E, Leal Castro, AL, Melo Diaz, JM, Rivera Monroy, ZJ and Garcia Castaneda, JE (2017) Synthetic peptides derived from bovine lactoferricin exhibit antimicrobial activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules, 22. doi:10.3390/molecules22030452Google ScholarPubMed
Jajere, SM (2019) A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Veterinary World 12, 504521.CrossRefGoogle ScholarPubMed
Joo, H-S, Fu, C-I and Otto, M (2016) Bacterial strategies of resistance to antimicrobial peptides. Philosophical Transactions of the Royal Society B: Biological Sciences 371, 20150292.CrossRefGoogle ScholarPubMed
Koo, H, Allan, RN, Howlin, RP, Stoodley, P and Hall-Stoodley, L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nature Reviews of Microbiology 15, 740755.CrossRefGoogle ScholarPubMed
Kwambana-Adams, B, Darboe, S, Nabwera, H, Foster-Nyarko, E, Ikumapayi, UN, Secka, O, Betts, M, Bradbury, R, Wegmüller, R, Lawal, B, Saha, D, Hossain, MJ, Prentice, AM, Kampmann, B, Anderson, S, Dalessandro, U and Antonio, M (2015) Salmonella infections in The Gambia, 2005-2015. Clinical Infectious Diseases 61(Suppl 4), S354362.CrossRefGoogle ScholarPubMed
Lamas, A, Miranda, JM, Regal, P, Vazquez, B, Franco, CM and Cepeda, A (2018) A comprehensive review of non-enterica subspecies of Salmonella enterica. Microbiological Research 206, 6073.CrossRefGoogle ScholarPubMed
Lamas, A, Miranda, JM, Vazquez, B, Cepeda, A and Franco, CM (2016) Biofilm formation, phenotypic production of cellulose and gene expression in Salmonella enterica decrease under anaerobic conditions. International Journal of Food Microbiology 238, 6367.CrossRefGoogle ScholarPubMed
Leon-Sicairos, N, Angulo-Zamudio, UA, Vidal, JE, Lopez-Torres, CA, Bolscher, JG, Nazmi, K, Reyes-Cortes, R, Reyes-Lopez, M, de la Garza, M and Canizalez-Roman, A (2014) Bactericidal effect of bovine lactoferrin and synthetic peptide lactoferrin chimera in Streptococcus pneumoniae and the decrease in luxS gene expression by lactoferrin. Biometals 27, 969980.CrossRefGoogle ScholarPubMed
Leon-Sicairos, N, Canizalez-Roman, A, de la Garza, M, Reyes-Lopez, M, Zazueta-Beltran, J, Nazmi, K, Gomez-Gil, B and Bolscher, JG (2009) Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus. Biochimie 91, 133140.CrossRefGoogle ScholarPubMed
León-Sicairos, N, Reyes-López, M, Ordaz-Pichardo, C and de la Garza, M (2006) Microbicidal action of lactoferrin and lactoferricin and their synergistic effect with metronidazole in Entamoeba histolytica. Biochemical Cellular Biology 84, 327336.CrossRefGoogle ScholarPubMed
Manyi-Loh, C, Mamphweli, S, Meyer, E and Okoh, A (2018) Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules, 23. doi:10.3390/molecules23040795Google ScholarPubMed
Mills, JP and Marchaim, D (2021) Multidrug-resistant Gram-negative bacteria: infection prevention and control update. Infectious Diseases Clinics North America 35, 969994.CrossRefGoogle ScholarPubMed
Moravej, H, Moravej, Z, Yazdanparast, M, Heiat, M, Mirhosseini, A, Moosazadeh Moghaddam, M and Mirnejad, R (2018) Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microbial Drug Resistance 24, 747767.CrossRefGoogle ScholarPubMed
Nibbering, PH, Ravensbergen, E, Welling, MM, van Berkel, LA, van Berkel, PH, Pauwels, EK and Nuijens, JH (2001) Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infectious Immunology 69, 14691476.CrossRefGoogle ScholarPubMed
Panlilio, H and Rice, CV (2021) The role of extracellular DNA in the formation, architecture, stability and treatment of bacterial biofilms. Biotechnological Bioengineering 118, 21292141.CrossRefGoogle ScholarPubMed
Quintero-Martínez, LE, Canizalez-Roman, A, Angulo-Zamudio, UA, Flores-Villaseñor, H, Velazquez-Roman, JA, Bolscher, JGM, Nazmi, K and Leon-Sicairos, N (2024) Bovine lactoferrin and chimera lactoferrin prevent and destroy Salmonella typhimurium biofilms in Caco-2 cells. Biochemical Cellular Biology. doi:10.1139/bcb-2024-0100CrossRefGoogle ScholarPubMed
Rather, MA, Gupta, K and Mandal, M (2021) Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Brazilian Journal of Microbiology 52, 17011718.CrossRefGoogle ScholarPubMed
Rodriguez, A, Pangloli, P, Richards, HA, Mount, JR and Draughon, FA (2006) Prevalence of salmonella in diverse environmental farm samples. Journal of Food Protection 69, 25762580.CrossRefGoogle ScholarPubMed
Rosa, L, Cutone, A, Lepanto, MS, Paesano, R and Valenti, P (2017) Lactoferrin: a natural glycoprotein involved in iron and inflammatory homeostasis. International Journal of Molecular Sciences 18, 1985.CrossRefGoogle ScholarPubMed
Ruangcharoen, S, Suwannarong, W, Lachica, M, Bolscher, JGM, Nazmi, K, Khunkitti, W and Taweechaisupapong, S (2017) Killing activity of LFchimera on periodontopathic bacteria and multispecies oral biofilm formation in vitro. World Journal of Microbiology & Biotechnology 33, 167.CrossRefGoogle ScholarPubMed
Sheffield, CL, Crippen, TL, Poole, TL and Beier, RC (2012) Destruction of single-species biofilms of Escherichia coli or Klebsiella pneumoniae subsp. pneumoniae by dextranase, lactoferrin, and lysozyme. International Microbiology 15, 185189.Google ScholarPubMed
Singh, PK (2004) Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. Biometals 17, 267270.CrossRefGoogle ScholarPubMed
Teraguchi, S, Shin, K, Ozawa, K, Nakamura, S, Fukuwatari, Y, Tsuyuki, S, Namihira, H and Shimamura, S (1995) Bacteriostatic effect of orally administered bovine lactoferrin on proliferation of clostridium species in the gut of mice fed bovine milk. Applied Environmental Microbiology 61, 501506.CrossRefGoogle ScholarPubMed
Venkatesan, N, Perumal, G and Doble, M (2015) Bacterial resistance in biofilm-associated bacteria. Future Microbiology 10, 17431750.CrossRefGoogle ScholarPubMed
Vinueza-Burgos, C, Cevallos, M, Ron-Garrido, L, Bertrand, S and De Zutter, L (2016) Prevalence and diversity of salmonella serotypes in Ecuadorian broilers at slaughter age. PLoS One 11(7), e0159567.CrossRefGoogle ScholarPubMed
Xu, G, Xiong, W, Hu, Q, Zuo, P, Shao, B, Lan, F, Lu, X, Xu, Y and Xiong, S (2010) Lactoferrin-derived peptides and Lactoferricin chimera inhibit virulence factor production and biofilm formation in Pseudomonas aeruginosa. Journal of Applied Microbiology 109, 13111318.CrossRefGoogle ScholarPubMed
Zarzosa-Moreno, D, Avalos-Gómez, C, Ramírez-Texcalco, LS, Torres-López, E, Ramírez-Mondragón, R, Hernández-Ramírez, JO, Serrano-Luna, J and de la Garza, M (2020) Lactoferrin and its derived peptides: an alternative for combating virulence mechanisms developed by pathogens. Molecules 25, 5763.CrossRefGoogle ScholarPubMed