Hostname: page-component-cb9f654ff-k7rjm Total loading time: 0 Render date: 2025-08-10T18:27:28.571Z Has data issue: false hasContentIssue false

Asymptotic expansion of the invariant measure for Markov-modulated ODEs at high frequency

Published online by Cambridge University Press:  30 January 2025

Pierre Monmarché*
Affiliation:
Sorbonne Université
Edouard Strickler*
Affiliation:
Université de Lorraine, CNRS, Inria, IECL
*
*Postal address: 4 place Jussieu 75005 Paris, France. Email: pierre.monmarche@sorbonne-universite.fr
**Postal address: Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France. Email: edouard.strickler@univ-lorraine.fr

Abstract

We consider time-inhomogeneous ordinary differential equations (ODEs) whose parameters are governed by an underlying ergodic Markov process. When this underlying process is accelerated by a factor $\varepsilon^{-1}$, an averaging phenomenon occurs and the solution of the ODE converges to a deterministic ODE as $\varepsilon$ vanishes. We are interested in cases where this averaged flow is globally attracted to a point. In that case, the equilibrium distribution of the solution of the ODE converges to a Dirac mass at this point. We prove an asymptotic expansion in terms of $\varepsilon$ for this convergence, with a somewhat explicit formula for the first-order term. The results are applied in three contexts: linear Markov-modulated ODEs, randomized splitting schemes, and Lotka–Volterra models in a random environment. In particular, as a corollary, we prove the existence of two matrices whose convex combinations are all stable but are such that, for a suitable jump rate, the top Lyapunov exponent of a Markov-modulated linear ODE switching between these two matrices is positive.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agazzi, A., Mattingly, J. C. and Melikechi, O. (2023). Random splitting of fluid models: Unique ergodicity and convergence. Commun. Math. Phys. 401, 497549.10.1007/s00220-023-04645-5CrossRefGoogle Scholar
Arnold, L., Crauel, H. and Eckmann, J.-P. (eds) (2006). Lyapunov Exponents. Springer, Berlin.Google Scholar
Ben-Israel, A. and Greville, T. N. E. (2003). Generalized Inverses: Theory and Applications, 2nd ed. Springer, New York.Google Scholar
Benaïm, M. (2018). Stochastic persistence. Preprint, arXiv:1806.08450.Google Scholar
Benaïm, M., Le Borgne, S., Malrieu, F. and Zitt, P.-A. (2014). On the stability of planar randomly switched systems. Ann. Appl. Prob. 24, 292311.10.1214/13-AAP924CrossRefGoogle Scholar
Benaïm, M. and Lobry, C. (2016). Lotka–Volterra with randomly fluctuating environments or ‘how switching between beneficial environments can make survival harder’. Ann. Appl. Prob. 26, 37543785.10.1214/16-AAP1192CrossRefGoogle Scholar
Benaïm, M., Lobry, C., Sari, T. and Strickler, E. (2023). A note on the top Lyapunov exponent of linear cooperative systems. Preprint, arXiv:2302.05874.Google Scholar
Benaïm, M. and Strickler, E. (2019). Random switching between vector fields having a common zero. Ann. Appl. Prob. 29, 326375.10.1214/18-AAP1418CrossRefGoogle Scholar
Chitour, Y., Mazanti, G., Monmarché, P. and Sigalotti, M. (2021). On the gap between deterministic and probabilistic Lyapunov exponents for continuous-time linear systems. Preprint, arXiv:2112.07005.Google Scholar
Chueshov, I. (2002). Monotone Random Systems Theory and Applications (Lect. Notes Math. 1779). Springer, Berlin.10.1007/b83277CrossRefGoogle Scholar
Davis, M. H. A. (1984). Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models. J. R. Statist. Soc, B 46, 353388.10.1111/j.2517-6161.1984.tb01308.xCrossRefGoogle Scholar
Du, N. H., Hening, A., Nguyen, D. H. and Yin, G. (2021). Dynamical systems under random perturbations with fast switching and slow diffusion: Hyperbolic equilibria and stable limit cycles. J. Differential Equat. 293, 313358.10.1016/j.jde.2021.05.032CrossRefGoogle Scholar
Elliott, R. J. and Siu, T. K. (2009). On Markov-modulated exponential-affine bond price formulae. Appl. Math. Finance 16, 115.10.1080/13504860802015744CrossRefGoogle Scholar
Faggionato, A., Gabrielli, D. and Ribezzi Crivellari, M. (2009). Non-equilibrium thermodynamics of piecewise deterministic Markov processes. J. Statist. Phys. 137, 259304.10.1007/s10955-009-9850-xCrossRefGoogle Scholar
Fainshil, L., Margaliot, M. and Chigansky, P. (2009). On the stability of positive linear switched systems under arbitrary switching laws. IEEE Trans. Automatic Control 54, 897899.10.1109/TAC.2008.2010974CrossRefGoogle Scholar
Goddard, B., Ottobre, M., Painter, K. and Souttar, I. (2023). On the study of slow-fast dynamics, when the fast process has multiple invariant measures. Preprint, arXiv:2305.04632.Google Scholar
Gurvits, L., Shorten, R. and Mason, O. (2007). On the stability of switched positive linear systems. IEEE Trans. Automatic Control 52, 10991103.10.1109/TAC.2007.899057CrossRefGoogle Scholar
Hatzikirou, H., Kavallaris, N. I. and Leocata, M. (2021). A novel averaging principle provides insights in the impact of intratumoral heterogeneity on tumor progression. Mathematics 9, 2530.10.3390/math9202530CrossRefGoogle Scholar
Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Springer, New York.10.1007/978-1-4757-4015-8CrossRefGoogle Scholar
Kharoufeh, J. P. and Cox, S. M. (2005). Stochastic models for degradation-based reliability. IIE Trans. 37, 533542.10.1080/07408170590929009CrossRefGoogle Scholar
Lawley, S. D., Mattingly, J. C. and Reed, M. C. (2014). Sensitivity to switching rates in stochastically switched ODEs. Commun. Math. Sci. 12, 13431352.10.4310/CMS.2014.v12.n7.a9CrossRefGoogle Scholar
Malrieu, F. and Zitt, P.-A. (2017). On the persistence regime for Lotka–Volterra in randomly fluctuating environments. ALEA Lat. Am. J. Prob. Math. Stat. 14, 733749.10.30757/ALEA.v14-35CrossRefGoogle Scholar
Monmarché, P., Schreiber, S. J. and Strickler, É. (2024). Impacts of tempo and mode of environmental fluctuations on population growth: Slow- and fast-limit approximations of Lyapunov exponents for periodic and random environments. Preprint, arXiv:2408.11179.Google Scholar
Pakdaman, K., Thieullen, M. and Wainrib, G. (2012). Asymptotic expansion and central limit theorem for multiscale piecewise-deterministic Markov processes. Stoch. Process. Appl. 122, 22922318.10.1016/j.spa.2012.03.005CrossRefGoogle Scholar
Talay, D. and Tubaro, L. (1990). Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl. 8, 483509.10.1080/07362999008809220CrossRefGoogle Scholar