Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We find all solutions of in integers m, n1, n2, n3, n4 for all relatively prime integers x, y below 100.
1.Baker, A. and Davenport, H., The equations 3x2 − 2 = y2 and 8x2 − y = z2, Quart. J. Math.20 (1969), 129–137.CrossRefGoogle Scholar
2
2.Dede, M. and Tijdeman, R., Exponential diophantine equations with four terms, Indag. Math. N.S.3 (1992), 47–57.Google Scholar
3
3.Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers, 5th ed. (The Claredon Press, Oxford University Press, New York, 1979).Google Scholar
4
4.Nagell, T., Introduction to number theory, 2nd ed. (Chelsea Publishing Co., New York, 1964).Google Scholar
5
5.Senge, H. G. and Strauss, E. G., P. V. numbers and sets of multiplicity, Period Math. Hungar.3 (1973), 93–100.CrossRefGoogle Scholar
6
6.Stewart, C. L., On the representation of an integer in two different bases, J. Reine. Angew. Math.319 (1980), 63–72.Google Scholar
7
7.Tijdeman, R. and Wang, Lianxiang, Sums of products of powers of given prime numbers, Pacific J. Math.132 (1988), 177–193, Corr. 135 (1988), 396–398.CrossRefGoogle Scholar
8
8.Lianxiang, Wang, Four terms equations, Indag. Math. 51 = Proc. K. N. A. W. Ser. A92 (1989), 355–361.Google Scholar
9
9.de Weger, B. M. M., Solving exponential diophantine equations using lattice basis reduction algorithms, J. Number Theory26 (1987), 325–367.CrossRefGoogle Scholar