Hostname: page-component-6bb9c88b65-vpjdr Total loading time: 0 Render date: 2025-07-26T11:54:47.122Z Has data issue: false hasContentIssue false

Boundaries and equivariant maps for ergodic groupoids

Published online by Cambridge University Press:  14 July 2025

Filippo Sarti*
Affiliation:
Department of Mathematics, University of Pisa, Pisa, Italy
Alessio Savini
Affiliation:
Department of Mathematics, University of Milano Bicocca, Milano MI, Italy
*
Corresponding author: Filippo Sarti; Email: filosarti@gmail.com

Abstract

We give a notion of boundary pair $(\mathcal{B}_-,\mathcal{B}_+)$ for measured groupoids which generalizes the one introduced by Bader and Furman [BF14] for locally compact groups. In the case of a semidirect groupoid $\mathcal{G}=\Gamma \ltimes X$ obtained by a probability measure preserving action $\Gamma \curvearrowright X$ of a locally compact group, we show that a boundary pair is exactly $(B_- \times X, B_+ \times X)$, where $(B_-,B_+)$ is a boundary pair for $\Gamma$. For any measured groupoid $(\mathcal{G},\nu )$, we prove that the Poisson boundaries associated to the Markov operators generated by a probability measure equivalent to $\nu$ provide other examples of our definition. Following Bader and Furman [BF], we define algebraic representability for an ergodic groupoid $(\mathcal{G},\nu )$. In this way, given any measurable representation $\rho \,:\,\mathcal{G} \rightarrow H$ into the $\kappa$-points of an algebraic $\kappa$-group $\mathbf{H}$, we obtain $\rho$-equivariant maps $\mathcal{B}_\pm \rightarrow H/L_\pm$, where $L_\pm =\mathbf{L}_\pm (\kappa )$ for some $\kappa$-subgroups $\mathbf{L}_\pm \lt \mathbf{H}$. In the particular case when $\kappa =\mathbb{R}$ and $\rho$ is Zariski dense, we show that $L_\pm$ must be minimal parabolic subgroups.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anantharaman-Delaroche, C. and Renault, J., Amenable groupoids, vol. 36, Monografie de l’Enseignement Mathematique (L’Enseignement Mathématique, 2000, Geneve 2000).Google Scholar
Anantharaman-Delaroche, C. and Renault, J., Amenable groupoids, Contemp. Math. 282 (2001), 3546.10.1090/conm/282/04677CrossRefGoogle Scholar
Bucher, M., Burger, M. and Iozzi, A., A dual interpretation of the Gromov–Thurston proof of Mostow rigidity and volume rigidity for representations of hyperbolic lattices, Trends in Harmonic Analysis, Springer INdAM Ser, (Springer, Milan, 2013), 4776.10.1007/978-88-470-2853-1_4CrossRefGoogle Scholar
Bucher, M., Burger, M. and Iozzi, A., The bounded borel class and complex representations of $3$ -manifold groups, Duke Math. J. 167(17) (2018), 31293169.10.1215/00127094-2018-0038CrossRefGoogle Scholar
Bader, U., Duchesne, B. and Lécureux, J., Almost algebraic actions of algebraic groups and applications to algebraic representations, Groups Geom. Dyn. 11(2) (2017), 705738.10.4171/ggd/413CrossRefGoogle Scholar
Bader, U. and Furman, A., Algebraic representations of ergodic actions and super-rigidity, (2014).Google Scholar
Bader, U. and Furman, A., Boundaries, Rigidity of Representations, and Lyapunov Exponents. Proceedings of ICM. 2014, Invited Lectures, (2014), 7196.Google Scholar
Bader, U. and Furman, A., Super-rigidity and non-linearity for lattices in products, Compos. Math 156(1) (2019), 158178.10.1112/S0010437X19007607CrossRefGoogle Scholar
Bader, U., Fisher, D., Miller, N. and Stover, M., Arithmeticity, superrigidity and totally geodesic submanifolds, Ann. Math 193(3) (2021), 837861.10.4007/annals.2021.193.3.4CrossRefGoogle Scholar
Bader, U., Fisher, D., Miller, N. and Stover, M., Arithmeticity, superrigidity and totally geodesic submanifolds of complex hyperbolic manifolds, Invent. Math 233(1) (2023), 169222.10.1007/s00222-023-01186-5CrossRefGoogle Scholar
Burger, M. and Iozzi, A., Boundary maps in bounded cohomology, appendix to “Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12(2) (2002), 281292. Appendix to “Continuous bounded cohomology and applications to rigidity theory” by M. Burger and N. Monod.10.1007/s00039-002-8246-8CrossRefGoogle Scholar
Burger, M., Iozzi, A. and Wienhard, A., Surface group representations with maximal Toledo invariant, Ann. Math (2) 172 (2010), 517566.10.4007/annals.2010.172.517CrossRefGoogle Scholar
Burger, M. and Monod, N., Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12(2) (2002), 219280.10.1007/s00039-002-8245-9CrossRefGoogle Scholar
Benoist, Y. and Quint, J. F., Random walks on reductive groups. A Series of Modern Surveys in Mathematics, (Springer, Berlin, 2016).10.1007/978-3-319-47721-3CrossRefGoogle Scholar
Duchesne, B., Lécureux, J. and Pozzetti, M. B., Boundary maps and maximal representations on infinite-dimensional hermitian symmetric spaces, Ergod. Theor. Dyn. Syst. 43(1) (2021), 150.Google Scholar
Duchesne, B., Infinite-dimensional nonpositively curved symmetric spaces of finite rank, Int. Math. Res. Notices 2013(7) (2012), 15781627, 03 2012.10.1093/imrn/rns093CrossRefGoogle Scholar
Effros, E., Global structure in Von Neumann algebras, T. Am. Math Soc. 121(2) (1966), 434454.10.1090/S0002-9947-1966-0192360-9CrossRefGoogle Scholar
Fisher, D., Morris, D. W. and Whyte, K., Nonergodic actions, cocycles and superrigidity, New York J. Math 10 (2004), 249269.Google Scholar
Furstenberg, H., A poisson formula for semi-simple lie groups, Ann. Math 77(2) (1963), 335386.10.2307/1970220CrossRefGoogle Scholar
Hahn, P., Haar measure for measure groupoids, T. Am. Math Soc. 242(0) (1978), 133.10.1090/S0002-9947-1978-0496796-6CrossRefGoogle Scholar
Iozzi, A., Bounded cohomology, boundary maps, and representations into Homeo+(S1) and SU(n,1), Rigidity in Dynamics and Geometry (Cambridge, 2000). (Springer, Berlin, 2002).Google Scholar
Kaimanovich, V. A., Measure-theoretic boundaries of markov chains, 0–2 laws and entropy. (Springer US, Berlin, 1992), 145180.Google Scholar
Kaimanovich, V. A., Double ergodicity of the Poisson boundary and applications to bounded cohomology, Geom. Funct. Anal. 13(4) (2003), 852861.10.1007/s00039-003-0433-8CrossRefGoogle Scholar
Kaimanovich, V. A., Amenability and the liouville property, Isreal J Math. 149(1) (2005), 4585.10.1007/BF02772536CrossRefGoogle Scholar
Margulis, G. A., Discrete groups of motions of manifolds of nonpositive curvature, Prooceedings of the international congress of mathematicians (Vancouver, B: C., 1974), 2:21-34, 1975. Canad. Math. Congress, Montreal Que.Google Scholar
Monod, N., Continuous bounded cohomology of locally compact groups, Number 1758 in Lecture Notes in Mathematics. (Springer-Verlag, Berlin, 2001).Google Scholar
Mostow, G. D., Quasi-conformal mappings in $n$ -space and the rigidity of the hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math 34 (1968), 53104.10.1007/BF02684590CrossRefGoogle Scholar
Mostow, G. D., Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, vol. 78 (Princeton University Press, 1973).Google Scholar
Muhly, P. S., Coordinates in operator algebra. (American Mathematical Society, 1997).Google Scholar
Pozzetti, M. B., Maximal representations of complex hyperbolic lattices into su(m,n), Geom. Funct. Anal. 25 (2015), 12901332.10.1007/s00039-015-0338-3CrossRefGoogle Scholar
Ramsay, A., Virtual groups and group actions, Adv. Math. 6(3) (1971), 253322.10.1016/0001-8708(71)90018-1CrossRefGoogle Scholar
Savini, A., On the trivializability of rank-one cocycles with an invariant field of projective measures, Eur. J. Math. 10(1) (2024).10.1007/s40879-023-00721-1CrossRefGoogle Scholar
Sarti, F. and Savini, A., Boundary maps and reducibility for cocycles into the isometries of CAT(0)-spaces, Groups Geom. Dyn. (2025). doi:10.4171/GGD/909 CrossRefGoogle Scholar
Sarti, F. and Savini, A., Measurable bounded cohomology of measured groupoids, (2023).Google Scholar
Sarti, F. and Savini, A., Superrigidity of maximal measurable cocycles of complex hyperbolic lattices, Math. Z. 300(1) (2022), 421443.10.1007/s00209-021-02801-yCrossRefGoogle Scholar
Sarti, F. and Savini, A., Parametrized Kähler class and Zariski dense orbital 1-cohomology, Math. Res. Lett. 30(6) (2023), 18951929.10.4310/MRL.2023.v30.n6.a9CrossRefGoogle Scholar
Wheeden, R. L. and Zygmund, A., Measure and integral: an introduction to real analysis. (CRC Press, New York Basel, 1977).10.1201/b15702CrossRefGoogle Scholar
Zimmer, R. J., Amenable ergodic group actions and an application to poisson boundaries of random walks, J. Funct. Anal. 27(3) (1978), 350372.10.1016/0022-1236(78)90013-7CrossRefGoogle Scholar
Zimmer, R. J., Strong rigidity for ergodic actions of semisimple lie groups, Ann. Math. 112(3) (1980), 511529.10.2307/1971090CrossRefGoogle Scholar
Zimmer, R. J., Ergodic theory and semisimple groups, vol. 81, of Monographs in Mathematics, (Birkhäuser Verlag, Basel, 1984).10.1007/978-1-4684-9488-4CrossRefGoogle Scholar