Hostname: page-component-6bb9c88b65-wr9vw Total loading time: 0 Render date: 2025-07-24T08:15:58.523Z Has data issue: false hasContentIssue false

Automorphism groups and signatures of smooth septic curves

Part of: Curves

Published online by Cambridge University Press:  13 May 2025

E. Badr
Affiliation:
Mathematics Department, Faculty of Science, Cairo University, Giza, Egypt Mathematics and Actuarial Science Department, American University in Cairo, New Cairo, Egypt
A. El-Guindy
Affiliation:
Mathematics Department, Faculty of Science, Cairo University, Giza, Egypt
M. Kamel*
Affiliation:
Mathematics Department, Faculty of Science, Cairo University, Giza, Egypt
*
Corresponding author: M. Kamel; Email: mohgamal@sci.cu.edu.eg

Abstract

We determine the list of automorphism groups for smooth plane septic curves over an algebraically closed field $K$ of characteristic $0$, as well as their signatures. For each group, we also provide a geometrically complete family over $K$, which consists of a generic defining polynomial equation describing each locus up to $K$-projective equivalence. Notably, we present two distinct examples of what we refer to as final strata of smooth plane curves.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Dedicated to the memory of our teacher and mentor Professor Nabil L. Youssef

References

Arakawa, T., Automorphism groups of compact Riemann surfaces with invariant subsets, Osaka J. Math. 37(4) (2000), 823846, MR 1809907.Google Scholar
Badr, E., On the stratification of smooth plane curves by automorphism groups, PhD thesis (UAB-Spain, 2017).Google Scholar
Badr, E. and Bars, F., Automorphism groups of nonsingular plane curves of degree 5, Comm. Algebra 44(10) (2016), 43274340, MR 3508302.CrossRefGoogle Scholar
Badr, E. and Bars, F., Non-singular plane curves with an element of “large” order in its automorphism group, Internat. J. Algebra Comput. 26(02) (2016), 399433, MR 3475065.CrossRefGoogle Scholar
Badr, E. and Bars, F., On fake ES-irreducible components of certain strata of smooth plane sextics, J. Algebra Appl. 24(02) (2025), 2550048.CrossRefGoogle Scholar
Badr, E. and Bars, F., The stratification by automorphism groups of smooth plane sextic curves, Ann. Mat. Pura Appl. (2025). https://doi.org/10.1007/s10231-025-01558-z CrossRefGoogle Scholar
Badr, E. and García, E. L., A note on the stratification by automorphisms of smooth plane curves of genus 6, Colloq. Math. 159(2) (2020), 207222.CrossRefGoogle Scholar
Blanc, J. and Stampfli, I., Automorphisms of the plane preserving a curve, Algebr. Geom. 2(2) (2015), 193213.CrossRefGoogle Scholar
Blanc, J., Pan, I. and Vust, T., On birational transformations of pairs in the complex plane, Geom. Dedicata 139(1) (2009), 5773.CrossRefGoogle Scholar
Braden, H. W. and Northover, T. P., Klein’s curve, J Phys. A 43(43) (2010), 434009.MR 2727783.CrossRefGoogle Scholar
Bujalance, E., Etayo, J. J. and Martínez, E., Automorphism groups of hyperelliptic Riemann surfaces, Kodai Math. J. 10(2) (1987), 174181, MR 897252.CrossRefGoogle Scholar
Bujalance, E., Gamboa, J. M. and Gromadzki, G., The full automorphism groups of hyperelliptic Riemann surfaces, Manuscripta Math. 79(3–4) (1993), 267282, MR 1223022.CrossRefGoogle Scholar
Breuer, T., Characters and Automorphism Groups of Compact Riemann Surfaces; London Mathematical Society Lecture Note Series 280, (2000).Google Scholar
Crass, S., Solving the sextic by iteration: a study in complex geometry and dynamics, Exp. Math. 8(3) (1999), 209240.CrossRefGoogle Scholar
Idei, H. K. and Kaneta, H., Uniqueness of the most symmetric non-singular plane sextics, Osaka J. Math. 37 (2000), 667687.Google Scholar
Elkies, N. D., The Klein quartic in number theory, the eightfold way, Math. Sci. Res. Inst. Publ, vol. 35 (Cambridge Univ. Press, Cambridge, 1999), 51101, MR 1722413Google Scholar
Farrington, E. S. A., Aspects of Klein’s quartic curve, ProQuest LLC, Ann Arbor, MI, 2010, Thesis (Ph.D.) Boston University. MR 2941382.Google Scholar
Fukasawa, S., Galois points on quartic curves in characteristic 3, Nihonkai Math. J. 17(2) (2006), 103110, MR 2290435.Google Scholar
Fukasawa, S., On the number of Galois points for a plane curve in positive characteristic, Comm. Algebra 36(1) (2008), 2936, MR 2378364.CrossRefGoogle Scholar
Fukasawa, S., Galois points for a plane curve in arbitrary characteristic, Geom. Dedicata 139(1) (2009), 211218, MR 2481846.CrossRefGoogle Scholar
Fukasawa, S., Complete determination of the number of Galois points for a smooth plane curve, Rend. Semin. Mat. Univ. Padova 129 (2013), 93113, MR 3090633.CrossRefGoogle Scholar
GAP. The GAP group: groups, algorithms, and programming, a system for computational discrete algebra (2008), Available at http://www.gap-system.org. Version 4.4.11.Google Scholar
Gromov, M., Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82(2) (1985), 307347.CrossRefGoogle Scholar
Harui, T., Automorphism groups of plane curves, Kodai Math. J. 42(2) (2019), 308331.CrossRefGoogle Scholar
Henn, P., Die Automorphismengruppen dar algebraischen Functionenkorper vom Geschlecht 3, Inagural-dissertation, (Heidelberg, 1976).Google Scholar
Homma, M., Galois points for a Hermitian curve, Comm. Algebra 34(12) (2006), 45034511, MR 2273720.CrossRefGoogle Scholar
Hurwitz, A., Uber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41(3) (1892), 403442. MR 1510753.CrossRefGoogle Scholar
Kaneta, H., Marcugini, S. and Pambianco, F., The most symmetric non-singular plane curves of degree $n\lt 8$ , RIMS Kokyuroku 1109 (1999), 182191.Google Scholar
Kaneta, H., Marcugini, S. and Pambianco, F., The most symmetric nonsingular plane curves of degree $n\leq 20$ , I, Geom. Dedicata 85(1/3) (2001), 317334. https://doi.org/10.1023/A:1010362623683 CrossRefGoogle Scholar
Kuribayashi, A. and Komiya, K., On Weierstrass points and automorphisms of curves of genus three, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Math., vol. 732, Springer, Berlin, 1979, pp. 253--299. MR 555703.CrossRefGoogle Scholar
García, E. L., Arithmetic properties of non-hyperelliptic genus 3 curves, PhD thesis (2014), Universitat Politècnica de Catalunya.Google Scholar
García, E. L., Twists of non-hyperelliptic curves, Rev. Mat. Iberoam. 33(1) (2017), 169182.CrossRefGoogle Scholar
The LMFDB Collaboration, The L-functions and Modular Forms Database, http://www.lmfdb.org, 2024 [Online; accessed October 2024].Google Scholar
Meagher, S. and Top, J., Twists of genus three curves over finite fields, Finite Fields Appl. 16(5) (2010), 347368.CrossRefGoogle Scholar
Miura, K. and Yoshihara, H., Field theory for function fields of plane quartic curves, J. Algebra 226(1) (2000), 283294, MR 1749889.CrossRefGoogle Scholar
Mitchell, H., Determination of the ordinary and modular ternary linear groups, Trans. Amer. Math. Soc. 12(2) (1911), 207242.CrossRefGoogle Scholar
Namba, M., Geometry of projective algebraic curves, vol. 88. Monographs and Textbooks in Pure and Applied Mathematics, 1984.Google Scholar
Oikawa, K., Notes on conformal mappings of a Riemann surface onto itself, Kodai Math. Sem. Rep. 8(1) (1956), 2330, MR 0080730.Google Scholar
Serre, J.-P., Cohomologie galoisienne, Cinquième édition, lecture notes in mathematics, vol. 5 (Springer-Verlag, Berlin, 1997).Google Scholar
Viro, O. Y., Real plane curves of degrees 7 and 8: new prohibitions, Math. USSR Izv. 23(2) (1984), 409422.CrossRefGoogle Scholar
Yoshida, Y., Projective plane curves whose automorphism groups are simple and primitive, Kodai Math. J. 44(2) (2021), 334368.CrossRefGoogle Scholar
Yoshihara, H., Function field theory of plane curves by dual curves, J. Algebra 239(1) (2001), 340355, MR 1827887.CrossRefGoogle Scholar