Hostname: page-component-54dcc4c588-hp6zs Total loading time: 0 Render date: 2025-10-13T14:40:08.190Z Has data issue: false hasContentIssue false

Plant genetic diversity hotspots in South America’s largest desert: implications for dryland conservation planning

Published online by Cambridge University Press:  01 August 2025

Ariadna Tripaldi
Affiliation:
Departamento de Botánica, Centro Regional Universitario Bariloche, Bariloche, Argentina INIBIOMA-CONICET, Bariloche, Argentina
María Paula Quiroga
Affiliation:
Departamento de Botánica, Centro Regional Universitario Bariloche, Bariloche, Argentina INIBIOMA-CONICET, Bariloche, Argentina
Mariana Tadey
Affiliation:
INIBIOMA-CONICET, Bariloche, Argentina
Cintia P Souto*
Affiliation:
INIBIOMA-CONICET, Bariloche, Argentina
*
Corresponding author: Cintia P. Souto; Email: csouto@comahue-conicet.gob.ar

Summary

Given the ongoing global extinction crisis, preserving genetic diversity is critical for long-term ecosystem resilience. A large, openly available DNA barcoding database could support this goal by allowing the identification of ‘genetic hotspots’ for conservation planning. We studied 77 woody species in the Monte Desert, South America’s largest dryland, using ITS2 and rbcLa markers to identify haplotypes for each species. We modified a previously published genetic diversity criterion, which prioritizes uniqueness, to also consider species ubiquity. We then mapped this genetic diversity metric, calculated Faith’s phylogenetic diversity (PD) index and overlaid our map with protected areas and permanent plantations. We identified five robust genetic hotspots, three of which coalesced into a central ‘mega-hotspot’. Alarmingly, most hotspots lay outside existing protected areas, and two overlapped with permanent plantations. As expected, high PD did not consistently align with high genetic diversity or species richness, suggesting that in the Monte Desert current protected areas overlook key genetic and PD. Our study highlights the importance of integrating DNA barcoding from understudied geographic regions into conservation plans.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Foundation for Environmental Conservation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abraham, E, Rubio, C, Salomón, M, Soria, D (2014) Desertificación: problema ambiental complejo de las tierras secas. In: Torres, L, Abraham, E, Pastor, G (eds), Una ventana sobre el territorio: herramientas teóricas para comprender las tierras secas (pp. 187264). Mendoza, Argentina: EDIUNC.Google Scholar
Antonelli, A, Fry, C, Smith, RJ, Eden, J, Govaerts, RHA, Kersey, P et al. (2023) State of the World’s Plants and Fungi. Royal Botanic Gardens, Kew [www document]. Available at https://doi.org/10.34885/wnwn-6s63 Google Scholar
Bellard, C, Bertelsmeier, C, Leadley, P, Thuiller, W, Courchamp, F (2012) Impacts of climate change on the future of biodiversity. Ecology Letters 15: 365377.CrossRefGoogle ScholarPubMed
Boeri, PA (2016) Bioprospección química y propagación de plantas nativas del monte patagónico como estrategias de conservación y uso sustentable. Doctoral thesis. Buenos Aires, Argentina: Facultad de Ciencias Agrarias y Forestales – Universidad Nacional de La Plata.Google Scholar
Bond, WJ (1994) Keystone species. In: Biodiversity and Ecosystem Function (pp. 237253). Berlin, Germany: Springer Berlin Heidelberg.CrossRefGoogle Scholar
Brum, FT, Graham, CH, Costa, GC, Hedges, SB, Penone, C, Radeloff, VC et al. (2017) Global priorities for conservation across multiple dimensions of mammalian diversity. Proceedings of the National Academy of Sciences of the United States of America 114: 76417646.CrossRefGoogle ScholarPubMed
Busso, CA, Pérez, DR (2018) Opportunities, limitations and gaps in the ecological restoration of drylands in Argentina. Annals of Arid Zone 57: 191200.Google Scholar
Cabrera, AL (1976) Regiones fitogeográficas argentinas. In: WF, Kugler (ed.), Enciclopedia Argentina de Agricultura y Jardinería II (pp. 185). Buenos Aires, Argentina: ACME.Google Scholar
Chehébar, C, Novaro, A, Iglesias, G, Walker, S, Funes, M, Tammone, M, Didier, K (2013) Identificación de áreas de importancia para la biodiversidad en la estepa y el monte de Patagonia. ErreGé y Asociados imprenta: 112 [www document]. URL https://sib.gob.ar/archivos/pub_apn_wcs_tnc2013.pdf Google Scholar
Cheng, T, Xu, C, Lei, L, Li, C, Zhang, Y, Zhou, S (2016) Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Molecular Ecology Resources 16: 138149.CrossRefGoogle ScholarPubMed
Ciais, P, Reichstein, M, Viovy, N, Granier, A, Ogée, J, Allard, V et al. (2005) Europewide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529533.CrossRefGoogle ScholarPubMed
Coates, DJ, Byrne, M, Moritz, C (2018) Genetic diversity and conservation units: dealing with the species–population continuum in the age of genomics. Frontiers in Ecology and Evolution 6: 165.CrossRefGoogle Scholar
Darriba, D, Taboada, GL, Doallo, R, Posada, D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.CrossRefGoogle ScholarPubMed
de Vere, N, Rich, TC, Trinder, SA, Long, C (2015) DNA barcoding for plants. Methods in Molecular Biology 1245: 101118.CrossRefGoogle ScholarPubMed
Díaz, S, Lavorel, S, de Bello, F, Quétier, F, Grigulis, K, Robson, TM (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America 104: 2068420689.CrossRefGoogle ScholarPubMed
Dirzo, R, Young, HS, Galetti, M, Ceballos, G, Isaac, NJ, Collen, B (2014) Defaunation in the Anthropocene. Science 345: 401406.CrossRefGoogle ScholarPubMed
Doi, H, Takahashi, M, Katano, I (2010) Genetic diversity increases regional variation in phenological dates in response to climate change. Global Change Biology 16: 373379.CrossRefGoogle Scholar
Duval, VS, Benedetti, G, Campo, AM (2017) Situación actual de las áreas protegidas en la provincia de La Pampa, Argentina. Revista Geográfica Venezolana 58: 164181.Google Scholar
Faith, DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation 61: 110.CrossRefGoogle Scholar
Forest, F, Grenyer, R, Rouget, M, Davies, TJ, Cowling, RM, Faith, DP et al. (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445: 757760.CrossRefGoogle ScholarPubMed
Frankham, R, Briscoe, DA, Ballou, JD (2010) Introduction to Conservation Genetics. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Gazol, A, Camarero, JJ, Vicente-Serrano, SM, Sánchez-Salguero, R, Gutiérrez, E, de Luis, M et al. (2018) Forest resilience to drought varies across biomes. Global Change Biology 24: 21432158.CrossRefGoogle ScholarPubMed
Gernhard, T (2008) The conditioned reconstructed process. Journal of Theoretical Biology 253: 769778.CrossRefGoogle ScholarPubMed
Guindon, S, Gascuel, O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52: 696704.CrossRefGoogle ScholarPubMed
Hamrick, JL, Godt, MW (1990) Allozyme diversity in plant species. In: Brown, AHD, Clegg, MT, Kahler, AL, Weir, BS (eds), Plant Population Genetics, Breeding and Genetic Resources (pp. 4363). Sunderland, MA, USA: Sinauer Associates, Inc.Google Scholar
Hartman, MD, Merchant, ER, Parton, WJ, Gutmann, MP, Lutz, SM, Williams, SA (2011) Impact of historical land-use changes on greenhouse gas exchange in the US Great Plains, 1883–2003. Ecological Applications 21: 11051119.CrossRefGoogle ScholarPubMed
Hijmans, RJ, Guarino, G, Macathur, P (2012) DIVA-GIS. Version 7.5.0. Manual [www document]. URL http://www.divagis.org Google Scholar
Hoban, S, Bruford, M, Jackson, JDU, Lopes-Fernandes, M, Heuertz, M, Hohenlohe, PA et al. (2020) Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biological Conservation 248: 108654.CrossRefGoogle Scholar
Hollingsworth, PM, Graham, SW, Little, DP (2011) Choosing and using a plant DNA barcode. PLoS ONE 6: e19254.CrossRefGoogle ScholarPubMed
Hood, GM (2008) PopTools version 3.0.6 [www document]. URL http://www.cse.csiro.au/poptools Google Scholar
Huaranca, LL, Iribarnegaray, MA, Albesa, F, Volante, JN, Brannstrom, C, Seghezzo, L (2019) Social perspectives on deforestation, land use change, and economic development in an expanding agricultural frontier in northern Argentina. Ecological Economics 165: 106424.CrossRefGoogle Scholar
Hurtado, SI, Calianno, M, Adduca, S, Easdale, MH (2023) Drylands becoming drier: evidence from North Patagonia, Argentina. Regional Environmental Change 23: 165.CrossRefGoogle Scholar
Isaac, NJB, Turvey, ST, Collen, B, Waterman, C, Baillie, JEM (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2: e296.CrossRefGoogle ScholarPubMed
IUCN (2022) Red List of Threatened Species [www document]. URL www.redlist.org Google Scholar
Joly, S, Davies, TJ, Archambault, A, Bruneau, A, Derry, A, Kembel, SW et al. (2014) Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead. Molecular Ecology Resources 14: 221232.CrossRefGoogle ScholarPubMed
Knight, AT, Cowling, RM, Rouget, M, Balmford, A, Lombard, AT, Campbell, BM (2008) Knowing but not doing: selecting priority conservation areas and the research–implementation gap. Conservation biology 22: 610617.CrossRefGoogle Scholar
Kress, WJ, Erickson, DL, Jones, FA, Swenson, NG, Perez, R, Sanjur, O, Bermingham, E (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proceedings of the National Academy of Sciences of the United States of America 106: 1862118626.CrossRefGoogle Scholar
Lavalle, A, Bertani, L (2005) Problemáticas ambientales de las áreas protegidas del norte de Neuquén, Patagonia Argentina. Anais do X Encontro de Geógrafos da América Latina [www document]. URL http://observatoriogeograficoamericalatina.org.mx/egal10/Procesosambientales/Usoderecursos/22.pdf Google Scholar
Lean, C, Maclaurin, J (2016) The value of phylogenetic diversity. In: Pellens, R, Grandcolas, P (eds), Biodiversity Conservation and Phylogenetic Systematics: Preserving Our Evolutionary Heritage in an Extinction Crisis (pp. 1937). Paris, France: Springer.CrossRefGoogle Scholar
Letsiou, S, Madesis, P, Vasdekis, E, Montemurro, C, Grigoriou, ME, Skavdis, G et al. (2024) DNA barcoding as a plant identification method. Applied Sciences 14: 1415.CrossRefGoogle Scholar
Liu, Y, Xue, J, Gui, D, Lei, J, Sun, H, Lv, G, Zhang, Z (2018) Agricultural oasis expansion and its impact on oasis landscape patterns in the southern margin of Tarim Basin, northwest China. Sustainability 10: 1957.CrossRefGoogle Scholar
Loreau, M, Hector, A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412: 7276.CrossRefGoogle ScholarPubMed
Maestre, FT, Benito, BM, Berdugo, M, Concostrina-Zubiri, L, Delgado-Baquerizo, M, Eldridge, DJ et al. (2021) Biogeography of global drylands. New Phytologist 231: 540558.CrossRefGoogle ScholarPubMed
Meyer, SE (2011) Is climate change mitigation the best use of desert shrublands? Natural Resources and Environmental Issues 17: 2.Google Scholar
Mittermeier, RA, Turner, WR, Larsen, FW, Brooks, TM, Gascon, C (2011) Global biodiversity conservation: the critical role of hotspots. In: Zachos, FE, Habel, JC (eds), Biodiversity Hotspots (pp. 322). Berlin, Germany: Springer.CrossRefGoogle Scholar
Mitton, JB (1997) Selection in Natural Populations. New York, NY, USA: Oxford University Press.CrossRefGoogle Scholar
Morello, J (2012) Monte de Sierras y Bolsones. In: Morello, J, Matteucci, SD, Rodriguez, AF, Silva, ME (eds), Ecorregiones y Complejos Ecosistémicos argentinos, 1st edition (pp. 265292). Buenos Aires, Argentina: Orientación Gráfica Editora.Google Scholar
Morris, LR (2011) Land-use legacies of cultivation in shrublands: ghosts in the ecosystem. Natural Resources and Environmental Issues 17: 3.Google Scholar
Myers, N (1990) The biodiversity challenge: expanded hot-spots analysis. Environmentalist 10: 243256.CrossRefGoogle ScholarPubMed
Myers, N, Mittermeier, RA, Mittermeier, CG, Da Fonseca, GA, Kent, J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853858.CrossRefGoogle ScholarPubMed
Owen, NR, Gumbs, R, Gray, CL, Faith, DP (2019) Global conservation of phylogenetic diversity captures more than just functional diversity. Nature Communications 10: 859.CrossRefGoogle ScholarPubMed
Oyarzabal, M, Clavijo, J, Oakley, L, Biganzoli, F, Tognetti, P, Barberis, I et al. (2018) Unidades de vegetación de la Argentina. Ecología Austral 28: 4063.CrossRefGoogle Scholar
Peakall, ROD, Smouse, PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28: 25372539.CrossRefGoogle ScholarPubMed
Pelliza, YI, Fernandez, A, Saiz, H, Tadey, M (2021) Together we stand, divided we fall: effects of livestock grazing on vegetation patches in a desert community. Journal of Vegetation Science 32: e13015.CrossRefGoogle Scholar
Pérez, DR, Farinaccio, FM, Aronson, J (2019) Towards a dryland framework species approach. Research in progress in the Monte Austral of Argentina. Journal of Arid Environments 161: 110.CrossRefGoogle Scholar
QGIS (2024) QGIS Geographic Information System. QGIS Association [www document]. URL http://www.qgis.org Google Scholar
Rambaut, A, Drummond, AJ, Xie, D, Baele, G, Suchard, MA (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901904.CrossRefGoogle ScholarPubMed
Ratnasingham, S, Hebert, PDN (2007) BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes 7: 355364.CrossRefGoogle ScholarPubMed
Reynolds, JF, Smith, DMS, Lambin, EF, Turner, BL, Mortimore, M, Batterbury, SPJ et al. (2007) Global desertification: building a science for dryland development. Science 316: 847851.CrossRefGoogle ScholarPubMed
Rodrigues, ASL, Brooks, TM, Gaston, KJ (2005) Integrating phylogenetic diversity in the selection of priority areas for conservation: does it make a difference? In: Purvis, A, Gittleman, JL, Brooks, TM (eds), Phylogeny and Conservation (pp. 101119). Cambridge, UK: Cambridge University Press.Google Scholar
Sassi, PL, Taraborelli, PA, Borghi, CE, Ojeda, RA (2009) Cattle grazing effects on annual plants assemblages in the central Monte Desert, Argentina. Journal of Arid Environments 73: 537541.CrossRefGoogle Scholar
Sayers, EW, Cavanaugh, M, Clark, K, Pruitt, KD, Sherry, ST, Yankie, L, Karsch-Mizrachi, I (2023) GenBank 2023 update. Nucleic Acids Research 51: 141144.CrossRefGoogle ScholarPubMed
Schweiger, O, Klotz, S, Durka, W, Kühn, I (2008) A comparative test of phylogenetic diversity indices. Oecologia 157: 485495.CrossRefGoogle ScholarPubMed
Sheth, BP, Thaker, VS (2017) DNA barcoding and traditional taxonomy: an integrated approach for biodiversity conservation. Genome 60: 618628.CrossRefGoogle ScholarPubMed
Souto, CP, Mathiasen, P, Acosta, MC, Quiroga, MP, Vidal-Russell, R, Echeverría, C, Premoli, AC (2015) Identifying genetic hotspots by mapping molecular diversity of widespread trees: when commonness matters. American Genetic Association 106: 537545.Google ScholarPubMed
Souto, CP, Zalazar, LP, Tadey, M, Premoli, AC (2024) Modeling past, present and future: species-specific responses to climate changes in three shrub congeners from south American drylands. Journal of Arid Environments 221: 105139.CrossRefGoogle Scholar
Suchard, MA, Lemey, P, Baele, G, Ayres, DL, Drummond, AJ, Rambaut, A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4: vey016.CrossRefGoogle ScholarPubMed
Tadey, M (2006) Grazing without grasses: effects of introduced livestock on plant community composition in an arid environment in northern Patagonia. Applied Vegetation Science 9: 109116.CrossRefGoogle Scholar
Tadey, M (2023) Cascading effects of livestock grazing on insect functional groups associated to flowers in arid lands. Agricultural and Forest Entomology 25: 375390.Google Scholar
Tadey, M, Farji-Brener, AG (2007) Identifying direct and indirect effects of exotic grazers on native plant cover in the Monte Desert of Argentina. Journal of Arid Environments 69: 526536.Google Scholar
Tamura, K, Stecher, G, Peterson, D, Filipski, A, Kumar, S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 27252729.CrossRefGoogle ScholarPubMed
Theissinger, K, Fernandes, C, Formenti, G, Bista, I, Berg, PR, Bleidorn, C et al. (2023) How genomics can help biodiversity conservation. Trends in Genetics 39: 545559.CrossRefGoogle ScholarPubMed
Tietje, M, Antonelli, A, Forest, F, Govaerts, R, Smith, SA, Sun, M et al. (2023) Global hotspots of plant phylogenetic diversity. New Phytologist 240: 16361646.CrossRefGoogle ScholarPubMed
Tucker, CM, Cadotte, MW (2013) Unifying measures of biodiversity: understanding when richness and phylogenetic diversity should be congruent. Diversity and Distributions 19: 845854.CrossRefGoogle Scholar
Tucker, CM, Davies, TJ, Cadotte, MW, Pearse, WD (2018) On the relationship between phylogenetic diversity and trait diversity. Ecology 99: 14731479.CrossRefGoogle ScholarPubMed
UNEP-WCMC (2023) Protected Area Profile for Argentina from the World Database on Protected Areas, July 2023 [www document]. URL www.protectedplanet.net Google Scholar
Vandergast, AG, Inman, RD, Barr, KR, Nussear, KE, Esque, TC, Hathaway, SA et al. (2013) Evolutionary hotspots in the Mojave Desert. Diversity 5: 293319.CrossRefGoogle Scholar
Villagra, PE, Defossé, GE, Del Valle, HF, Tabeni, S, Rostagno, M, Cesca, E, Abraham, E (2009) Land use and disturbance effects on the dynamics of natural ecosystems of the Monte Desert: implications for their management. Journal of Arid Environments 73: 202211.CrossRefGoogle Scholar
Volante, JN, Paruelo, JM (2015) Is forest or ecological transition taking place? Evidence for the semiarid Chaco in Argentina. Journal of Arid Environments 123: 2130.CrossRefGoogle Scholar
Wali, A, Alvira, D, Tallman, PS, Ravikumar, A, Macedo, MO (2017) A new approach to conservation: using community empowerment for sustainable well-being. Ecology & Society 22: 6.CrossRefGoogle Scholar
Wilcox, BA (1984) In situ conservation of genetic resources: determinants of minimum area requirements. In: McNeely, JA, Miller, KR (eds), National Parks, Conservation and Development: The Role of Protected Areas in Sustaining Society (pp. 639647). Washington, DC, USA: Smithsonian Institution Press.Google Scholar
Winter, M, Devictor, V, Schweiger, O (2013) Phylogenetic diversity and nature conservation: where are we? Trends in Ecology & Evolution 28: 199204.CrossRefGoogle ScholarPubMed
Wood, DA, Vandergast, AG, Barr, KR, Inman, RD, Esque, TC, Nussear, KE, Fisher, RN (2013) Comparative phylogeography reveals deep lineages and regional evolutionary hotspots in the Mojave and Sonoran deserts. Diversity and Distributions 19: 722737.CrossRefGoogle Scholar
Yang, L, Su, D, Chang, X, Foster, CS, Sun, L, Huang, CH et al. (2020) Phylogenomic insights into deep phylogeny of angiosperms based on broad nuclear gene sampling. Plant Communications 1: 100027.CrossRefGoogle ScholarPubMed
Yao, H, Song, J, Liu, C, Luo, K, Han, J, Li, Y et al. (2010) Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS ONE 5: e13102.CrossRefGoogle Scholar
Supplementary material: File

Tripaldi et al. supplementary material 1

Tripaldi et al. supplementary material
Download Tripaldi et al. supplementary material 1(File)
File 23 KB
Supplementary material: File

Tripaldi et al. supplementary material 2

Tripaldi et al. supplementary material
Download Tripaldi et al. supplementary material 2(File)
File 23.8 KB
Supplementary material: File

Tripaldi et al. supplementary material 3

Tripaldi et al. supplementary material
Download Tripaldi et al. supplementary material 3(File)
File 297.4 KB
Supplementary material: File

Tripaldi et al. supplementary material 4

Tripaldi et al. supplementary material
Download Tripaldi et al. supplementary material 4(File)
File 142.4 KB
Supplementary material: File

Tripaldi et al. supplementary material 5

Tripaldi et al. supplementary material
Download Tripaldi et al. supplementary material 5(File)
File 30.5 KB
Supplementary material: File

Tripaldi et al. supplementary material 6

Tripaldi et al. supplementary material
Download Tripaldi et al. supplementary material 6(File)
File 32.1 KB
Supplementary material: File

Tripaldi et al. supplementary material 7

Tripaldi et al. supplementary material
Download Tripaldi et al. supplementary material 7(File)
File 49.4 KB