Hostname: page-component-5447f9dfdb-vwtfw Total loading time: 0 Render date: 2025-07-30T04:52:09.921Z Has data issue: false hasContentIssue false

Amazonian forest conservation through sustainable use: evidence based on Brazil nut life histories linked to human occupation

Published online by Cambridge University Press:  24 July 2025

Anderson Vasconcelos Firmino*
Affiliation:
Universidade Federal do Amapá (Unifap), Programa de Pós-graduação em Biodiversidade Tropical, Macapá, AP, Brazil
Karen A Kainer
Affiliation:
University of Florida, School of Forest, Fisheries, and Geomatics Sciences and Center for Latin American Studies, Gainesville, FL, USA
Lúcia Helena Oliveira Wadt
Affiliation:
Empresa Brasileira de Pesquisa Agropecuária (Embrapa Rondônia), Porto Velho, RO, Brazil
Haroldo Jackson Pereira da Silva
Affiliation:
Universidade Federal do Amapá (Unifap), Programa de Pós-graduação em Biodiversidade Tropical, Macapá, AP, Brazil
Daniele Alencar Gonçalves
Affiliation:
Universidade Federal do Amapá (Unifap), Programa de Pós-graduação em Biodiversidade Tropical, Macapá, AP, Brazil
Ediglei Gomes Rodrigues
Affiliation:
Universidade Federal do Amapá (Unifap), Programa de Pós-Graduação em Ciências Ambientais, Macapá, AP, Brazil
Marcelino Carneiro Guedes
Affiliation:
Universidade Federal do Amapá (Unifap), Programa de Pós-graduação em Biodiversidade Tropical, Macapá, AP, Brazil Empresa Brasileira de Pesquisa Agropecuária (Embrapa Amapá), Macapá, AP, Brazil
*
Corresponding author: Anderson Vasconcelos Firmino; Email: andersonvasconcelos11@gmail.com

Summary

The Brazil nut tree Bertholletia excelsa is an icon of Amazon conservation through sustainable use. Moderate disturbance, such as that caused by swidden agriculture, favours this heliophilic species. Our systematic literature review of Bertholletia studies and historical records addresses the following questions: do slash-and-burn farming systems increase Bertholletia density and growth? What do historical records reveal about the links between Bertholletia life history and human occupation? And what policies and regulations shape the current context for harnessing this synergistic potential for sustainable use? Compared to mature forests, slash-and-burn fallow seedling/sapling densities (11–82 individuals ha–1, with a mean of 29 individuals ha–1) are greater and faster-growing. Extant Bertholletia trees that were cut and burned during swidden preparation resprout as forked individuals and supplement new seeds buried by Dasyprocta spp. The presence of large forked Bertholletia trees and the occurrence of anthropogenic soils, particularly brown soils associated with Brazil nut tree groves, provide evidence that extant Bertholletia groves may be islands of active and passive agroecological management by ancestral Indigenous populations and local communities. This supports the notion that conservation through sustainable use can maintain Amazonian megadiversity. Furthermore, fire has been used in the Amazon since the onset of crop cultivation (including Bertholletia) c. 4500 years ago, suggesting that a more effective approach than banning fires would be to implement a systematic and methodical fire and fuel management strategy, given the ineffectiveness of command-and-control policies in this regard. The 124 conservation units and Indigenous lands in the Amazon containing Brazil nut trees reinforce the importance of policies to create protected areas. Evidence suggests that the presence of an Amazonian biocultural forest – a phenomenon resulting from the interaction between human activities and natural processes – can be sustainably used to promote what might be termed ‘sociobiodiversity conservation’.

Information

Type
Subject Review
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Foundation for Environmental Conservation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aragão, LEOC, Anderson, LO, Fonseca, MG, Rosan, TM, Vedovato, LB, Wagner, FH et al. (2018) 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications 9: 112.10.1038/s41467-017-02771-yCrossRefGoogle ScholarPubMed
Baider, C (2000) Demografia e ecologia de dispersão de frutos de Bertholletia excelsa Humb. & Bonpl. (Lecythidaceae) em castanhais silvestres da Amazônia Oriental. Doctoral thesis. São Paulo, Brazil: Universidade de São Paulo.Google Scholar
Balée, W (1989) The Culture of Amazonian Forests. Advances in Economic Botany 7: 121.Google Scholar
Balée, W (1998) Historical ecology: premises and postulates. In: Balée, W (ed.), Advances in Historical Ecology (pp. 1329). New York, NY, USA: Columbia University Press.Google Scholar
Batista, APB, Scolforo, HF, de Mello, JM, Guedes, MC, Terra, MCNS, Scalon, JD et al. (2019) Spatial association of fruit yield of Bertholletia excelsa Bonpl. trees in eastern Amazon. Forest Ecology and Management 441: 99105.10.1016/j.foreco.2019.03.043CrossRefGoogle Scholar
Bertwell, TD, Kainer, KA, Cropper, WP, Staudhammer, CL, de Oliveira Wadt, LH (2018) Are Brazil nut populations threatened by fruit harvest? Biotropica 50: 5059.10.1111/btp.12505CrossRefGoogle Scholar
Bongiolo, ES, Kainer, KA, Cropper, W, Staudhammer, CL, Wadt LHdO (2020) Swidden fallow management to increase landscape-level Brazil nut productivity. Forest Ecology and Management 464: 118019.10.1016/j.foreco.2020.118019CrossRefGoogle Scholar
Brasil (2024) DECRETO 12044, DE 5 DE JUNHO DE 2024 – Institui a Estratégia Nacional de Bioeconomia. Diário oficial da união 1: 3.Google Scholar
Bugge, MM, Hansen, T, Klitkou, A (2016) What is the bioeconomy? A review of the literature. Sustainability (Switzerland) 8: 922.Google Scholar
Caetano Andrade, VL, Flores, BM, Levis, C, Clement, CR, Roberts, P, Schöngart, J (2019) Growth rings of Brazil nut trees (Bertholletia excelsa) as a living record of historical human disturbance in Central Amazonia. PLoS ONE 14: 118.CrossRefGoogle ScholarPubMed
Carmenta, R, Coudel, E, Steward, AM (2018) Forbidden fire: does criminalising fire hinder conservation efforts in swidden landscapes of the Brazilian Amazon? Geographical Journal 185: 2337.10.1111/geoj.12255CrossRefGoogle Scholar
Chmyz, I, Sganzerla, EM (2006) Ocupação humana na Área do Complexo Jari. Arqueologia 9: 129149.Google Scholar
Clement, CR, Denevan, WM, Heckenberger, MJ, Junqueira, AB, Neves, EG, Teixeira, WG et al. (2015) The domestication of Amazonia before European conquest. Proceedings of the Royal Society B: Biological Sciences 282: 20150813.CrossRefGoogle ScholarPubMed
Connell, JH (1978) Diversity in tropical rain forests and coral reefs. Science 199: 13021310.10.1126/science.199.4335.1302CrossRefGoogle ScholarPubMed
Cotta, JN, Kainer, KA, Wadt, LHO, Staudhammer, CL (2008) Shifting cultivation effects on Brazil nut (Bertholletia excelsa) regeneration. Forest Ecology and Management 256: 2835.10.1016/j.foreco.2008.03.026CrossRefGoogle Scholar
Curtis, PG, Slay, CM, Harris, NL, Tyukavina, A, Hansen, MC (2018) Classifying drivers of global forest loss. Science 361: 11081111.10.1126/science.aau3445CrossRefGoogle ScholarPubMed
da Silva, HJP (2018) Ecologia Histórica e Associação da castanheira-da-amazônia com terra preta de índio (TPI) – mais evidências da origem antrópica dos castanhais no Sul do Amapá. Dissertation. Macapá, Brazil: Universidade Federal do Amapá.Google Scholar
Daeli, W, Carmenta, R, Monroe, MC, Adams, AE (2021) Where policy and culture collide: perceptions and responses of swidden farmers to the burn ban in West Kalimantan, Indonesia. Human Ecology 49: 159170.10.1007/s10745-021-00227-yCrossRefGoogle Scholar
De Jesus, FLM, Guedes, MC (2017) Registro de experiência do Projeto Carbono Cajari : caracterização social das comunidades e castanheiros do sul do Amapá e de seus sistemas produtivos. In: Dias, T, Eidt, JS, Udry, C (eds)., Diálogos de saberes: relatos da Embrapa (pp. 313325). Brasília, Brazil: Embrapa.Google Scholar
Eloy, L, Bilbao, BA, Mistry, J, Schmidt, IB (2019) From fire suppression to fire management: advances and resistances to changes in fire policy in the savannas of Brazil and Venezuela. Geographical Journal 185: 1022.CrossRefGoogle Scholar
Embrapa (2025) Rede Kamukaia: conhecimento para a sustentabilidade da Amazônia [www document]. URL https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/510509/1/20141.pdf Google Scholar
Falcão NPdS, Borges, LF (2006) Efeito da fertilidade de terra preta de índio da Amazônia Central no estado nutricional e na produtividade do mamão hawaí (Carica papaya L.). Acta Amazonica 36: 401406.Google Scholar
Fauset, S, Johnson, MO, Gloor, M, Baker, TR, Monteagudo, MA, Brienen, RJW et al. (2015) Hyperdominance in Amazonian forest carbon cycling. Nature Communications 6: 19.10.1038/ncomms7857CrossRefGoogle ScholarPubMed
Garcia, SN, Osburn, BI, Jay-Russell, MT (2020) One health for food safety, food security, and sustainable food production. Frontiers in Sustainable Food Systems 4: 19.10.3389/fsufs.2020.00001CrossRefGoogle Scholar
Gavin, MC, McCarter, J, Mead, A, Berkes, F, Stepp, JR, Peterson, D et al. (2015) Defining biocultural approaches to conservation. Trends in Ecology and Evolution 30: 140145.10.1016/j.tree.2014.12.005CrossRefGoogle ScholarPubMed
Guariguata, MR, Cronkleton, P, Duchelle, AE, Zuidema, PA (2017) Revisiting the ‘cornerstone of Amazonian conservation’: a socioecological assessment of Brazil nut exploitation. Biodiversity and Conservation 26: 20072027.10.1007/s10531-017-1355-3CrossRefGoogle Scholar
Guedes, MC, da Costa, P, de Castilho, CV, Frazão, RF, Milheiras, SG, de Sousa, WP (2023) Serviços ecossistêmicos da floresta com castanheiras e serviços ambientais prestados pelos agroextrativistas – manejadores e guardiões da floresta em pé. In: Wadt, LHdO, Maroccolo, JF, Guedes, MC, Katia, EdS (eds), Castanha – da – Amazônia (pp. 285314). Brasília, Brazil: Embrapa.Google Scholar
Guedes, MC, Neves, EdS, Rodrigues, EG, Paiva, P, Costa, JBPC, Freitas, MF et al. (2014) ‘Castanha na roça’: expansão da produção e renovação dos castanhais em áreas de agricultura itinerante no Amapá, Brasil. Boletim do Museu Paraense Emílio Goeldi – Ciências Naturais 9: 381398.10.46357/bcnaturais.v9i2.532CrossRefGoogle Scholar
Haugaasen, JMT, Haugaasen, T, Peres, CA, Gribel, R, Wegge, P (2010) Seed dispersal of the Brazil nut tree (Bertholletia excelsa) by scatter-hoarding rodents in a Central Amazonian forest. Journal of Tropical Ecology 26: 251262.10.1017/S0266467410000027CrossRefGoogle Scholar
Kainer, KA, Duryea, ML, Macedo, NC, Williams, K (1998) Brazil nut seedling establishment and autecology in extractive reserves of Acre, Brazil. Ecological Applications 8: 397410.CrossRefGoogle Scholar
Kern, DC, D’Aquino, G, Rodrigues, TE, Frazao, FJL, Sombroek, W, Myers, TP et al. (2003) Distribution of Amazonian Dark Earths in the Brazilian Amazon. Amazonian Dark Earths: 5175.Google Scholar
Levis, C, Costa, FRC, Bongers, F, Peña-Claros, M, Clement, CR, Junqueira, AB et al. (2017) Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355: 925931.CrossRefGoogle ScholarPubMed
Levy, SA, Cammelli, F, Munger, J, Gibbs, HK, Garrett, RD (2023) Deforestation in the Brazilian Amazon could be halved by scaling up the implementation of zero-deforestation cattle commitments. Global Environmental Change 80: 102671.10.1016/j.gloenvcha.2023.102671CrossRefGoogle Scholar
Lombardo, U, Arroyo-Kalin, M, Schmidt, M, Huisman, H, Lima, HP, de Paula Moraes, C et al. (2022) Evidence confirms an anthropic origin of Amazonian Dark Earths. Nature Communications 13: 16.10.1038/s41467-022-31064-2CrossRefGoogle ScholarPubMed
Maezumi, SY, Alves, D, Robinson, M, de Souza, JG, Levis, C, Barnett, RL et al. (2018a) The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nature Plants 4: 540547.10.1038/s41477-018-0205-yCrossRefGoogle ScholarPubMed
Maezumi, SY, Robinson, M, de Souza, J, Urrego, DH, Schaan, D, Alves, D et al. (2018b) New insights from pre-Columbian land use and fire management in Amazonian Dark Earth forests. Frontiers in Ecology and Evolution 6: 111.10.3389/fevo.2018.00111CrossRefGoogle Scholar
Maroccolo, JF, Wadt, LHdO, de Abreu Sá Diniz, Janaína Deane (2023) Panorama da cadeia de valor nos estados da Amazônia Legal. In: Wadt, LHdO, Maroccolo, JF, Guedes, MC, Katia, EdS (eds), Castanha – da – Amazônia (p. 2024). Brasília, Brazil: Embrapa.Google Scholar
McMichael, CNH, Bush, MB, Jiménez, JC, Gosling, WD (2023) Past human-induced ecological legacies as a driver of modern Amazonian resilience. People and Nature 5: 14151429.10.1002/pan3.10510CrossRefGoogle Scholar
Milheiras, SG, Guedes, M, Silva, FAB, Aparício, P, Mace, GM (2020) Patterns of biodiversity response along a gradient of forest use in Eastern Amazonia, Brazil. PeerJ 2020: 123.Google Scholar
Mistry, J, Bizerril, M (2011) Por Que é Importante Entender as Inter-Relações entre Pessoas, Fogo e Áreas Protegidas? Biodiversidade Brasileira 2: 4049.10.37002/biodiversidadebrasileira.v1i2.137CrossRefGoogle Scholar
Mistry, J, Schmidt, IB, Eloy, L, Bilbao, B (2019) New perspectives in fire management in South American savannas: the importance of intercultural governance. Ambio 48: 172179.10.1007/s13280-018-1054-7CrossRefGoogle ScholarPubMed
Moll-Rocek, J, Gilbert, ME, Broadbent, EN (2014) Brazil nut (Bertholletia excelsa, Lecythidaceae) regeneration in logging gaps in the Peruvian Amazon. International Journal of Forestry Research 2014: 18.10.1155/2014/420764CrossRefGoogle Scholar
Mori, S, Prance, GT (1990) Taxonomy, ecology, and economic botany of the Brazil nut. Advances in Economic Botany 8: 130150.Google Scholar
Myers, GP, Newton, AC, Melgarejo, O (2000) The influence of canopy gap size on natural regeneration of Brazil nut (Bertholletia excelsa) in Bolivia. Forest Ecology and Management 127: 119128.10.1016/S0378-1127(99)00124-3CrossRefGoogle Scholar
Nepstad, D, Schwartzman, S, Bamberger, B, Santilli, M, Ray, D, Schlesinger, P et al. (2006) Inhibition of Amazon deforestation and fire by parks and Indigenous lands. Conservation Biology 20: 6573.CrossRefGoogle ScholarPubMed
Neves, ES (2010) Regeneração natural e interação do crescimento inicial da castanheira da Amazônia (Bertholletia excelsa Bonpl.) com atributos do solo e luz. Monografia em Engenharia Florestal 38. Macapá, Brazil: Universidade do Estado do Amapá.Google Scholar
Neves, ES, Wadt, LHO, Guedes, MC (2016) Estrutura populacional e potencial para o manejo de Bertholletia excelsa (Bonpl.) em castanhais nativos do Acre e Amap. Scientia Forestalis/Forest Sciences 44: 1931.Google Scholar
Nimuendajú, C (2017) Mapa etno-histórico do Brasil e regiões adjacentes, 2nd edition. Brasília, Brazil: Instituto do Patrimônio Histórico e Artístico Nacional, Instituto Brasileiro de Geografia e Estatística.Google Scholar
Ortiz, EG (2002) Brazil nut (Bertholletia excelsa) Enrique. In: Shanley, P, Pierce, AR, Laird, SA, Guillén, A (eds), Tapping the Green Market: Certification and Management of Non-Timber Forest Products (pp. 6174). London, UK: Routledge.Google Scholar
Pacheco, M, Meyer, C (2022) Land tenure drives Brazil’s deforestation rates across socio-environmental contexts. Nature 13: 5759.Google ScholarPubMed
Paiva, PMV (2009) A coleta intensiva e a agricultura itinerante são ameaças para os castanhais da Reserva Extrativista do rio Cajari? Dissertation. Macapá, Brazil: Universidade Federal do Amapá.Google Scholar
Paiva, PMV, Guedes, MC, Funi, C (2011) Brazil nut conservation through shifting cultivation. Forest Ecology and Management 261: 508514.10.1016/j.foreco.2010.11.001CrossRefGoogle Scholar
Palace, MW, McMichael, CNH, Braswell, BH, Hagen, SC, Bush, MB, Neves, E et al. (2017) Ancient Amazonian populations left lasting impacts on forest structure. Ecosphere 8: e02035.10.1002/ecs2.2035CrossRefGoogle Scholar
Pärssinen, M, Balée, W, Ranzi, A, Barbosa, A (2020a) The geoglyph sites of Acre, Brazil: 10 000-year-old land-use practices and climate change in Amazonia. Antiquity 94: 15381556.10.15184/aqy.2020.208CrossRefGoogle Scholar
Pärssinen, M, Ferreira, E, Virtanen, PK, Ranzi, A (2020b) Domestication in motion: macrofossils of pre-colonial Brazilian nuts, palms and other Amazonian planted tree species found in the upper purus. Environmental Archaeology 3: 309322.Google Scholar
Peng, L, Zhiming, F, Luguang, J, Chenhua, L, Jinghua, Z (2014) Uma revisão da agricultura rotativa no Sudeste Asiático. Sensoriamento Remoto 6: 16541683.Google Scholar
Peres, CA, Baider, C (1997). Seed dispersal, spatial distribution and population structure of Brazil nut trees (Bertholletia excelsa) in southeastern Amazonia. Journal of Tropical Ecology 13: 595616.10.1017/S0266467400010749CrossRefGoogle Scholar
Peres, CA, Baider, C, Zuidema, PA, Wadt, LHO, Kainer, KA, Gomes-Silva, DAP et al. (2003) Demographic threats to the sustainability of Brazil nut exploitation. Science 302: 21122114.10.1126/science.1091698CrossRefGoogle Scholar
Posey, DA (1985) Indigenous management of tropical forest ecosystems: the case of the Kayapó indians of the Brazilian Amazon. Agroforestry Systems 3: 139158.CrossRefGoogle Scholar
Ribeiro, MBN, Jerozolimski, A, De Robert, P, Salles, N V., Kayapó, B, Pimentel, TP et al. (2014) Anthropogenic landscape in southeastern Amazonia: contemporary impacts of low-intensity harvesting and dispersal of Brazil nuts by the Kayapó Indigenous people. PLoS ONE 9: e102187.10.1371/journal.pone.0102187CrossRefGoogle ScholarPubMed
Robinson, M, De Souza, JG, Maezumi, SY, Cárdenas, M, Pessenda, L, Prufer, K et al. (2018) Uncoupling human and climate drivers of late Holocene vegetation change in southern Brazil. Scientific Reports 8: 110.10.1038/s41598-018-24429-5CrossRefGoogle ScholarPubMed
Roosevelt, AC, Lima da Costa, M, Lopes Machado, C, Michab, M, Mercier, N, Valladas, H et al. (1996) Paleoindian cave dwellers in the Amazon: the peopling of the Americas. Science 272: 373384.10.1126/science.272.5260.373CrossRefGoogle Scholar
Rosenfeld, T, Pokorny, B, Marcovitch, J, Poschen, P (2024a) Bioeconomy based on non-timber forest products for development and forest conservation – untapped potential or false hope? A systematic review for the Brazilian Amazon. Forest Policy and Economics 163: 103228.10.1016/j.forpol.2024.103228CrossRefGoogle Scholar
Rosenfeld, T, Pokorny, B, Marcovitch, J, Poschen, P (2024b) Local development based on non-timber forest products: evidence from a mapping of initiatives in the Brazilian Amazon since Rio 1992. Sustainability (Switzerland) 16: 6005.Google Scholar
Salomão, RDP (1991) Estrutura e densidade de Bertholletia excelsa H. & B. (‘Castanheira’) nas regiões de Carajás e Marabá, estado do Pará. Boletim do Museu Paraense Emílio Goeldi: Ciências Naturais 7: 4768.Google Scholar
Salomão, RDP, Rosa, NA, Castilho, A, Morais, KAC (2006) Castanheira-do-brasil recuperando áreas degradadas e provendo alimento e renda para comunidades da Amazônia Setentrional. Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais 1: 6578.10.46357/bcnaturais.v1i2.743CrossRefGoogle Scholar
Schmidt, MJ, Arroyo-Kalin, M, Lima, HP, Moraes CdP, Neves, EG, Texeira, W et al. (2022) Archaeology and ethnography demonstrate a human origin for Amazonian Dark Earths. 10.31235/OSF.IO/Y53GX (epub ahead of print).Google Scholar
Schöngart, J, Gribel, R, Ferreira da Fonseca-Junior, S, Haugaasen, T (2015) Age and growth patterns of Brazil nut trees (Bertholletia excelsa Bonpl.) in Amazonia, Brazil. Biotropica 47: 550558.10.1111/btp.12243CrossRefGoogle Scholar
Schuck, EC, Nganje, W, Yantio, D (2002) The role of land tenure and extension education in the adoption of slash and burn agriculture. Ecological Economics 43: 6170.10.1016/S0921-8009(02)00180-5CrossRefGoogle Scholar
Scoles, R, Canto, MS, Almeida, RG, Vieira, DP (2016) Áreas Desmatadas em Oriximiná, Pará. Floresta e Ambiente 23: 555564.10.1590/2179-8087.132015CrossRefGoogle Scholar
Scoles, R, Gribel, R (2011) Population structure of Brazil nut (Bertholletia excelsa, Lecythidaceae) stands in two areas with different occupation histories in the Brazilian Amazon. Human Ecology 39: 455464.10.1007/s10745-011-9412-0CrossRefGoogle Scholar
Scoles, R, Gribel, R (2012) The regeneration of Brazil nut trees in relation to nut harvest intensity in the Trombetas River valley of Northern Amazonia, Brazil. Forest Ecology and Management 265: 7181.10.1016/j.foreco.2011.10.027CrossRefGoogle Scholar
Scoles, R, Gribel, R (2015) Human influence on the regeneration of the Brazil nut tree (Bertholletia excelsa Bonpl., Lecythidaceae) at Capanã Grande Lake, Manicoré, Amazonas, Brazil. Human Ecology 43: 843854.10.1007/s10745-015-9795-4CrossRefGoogle Scholar
Scoles, R, Gribel, R, Klein, GN (2011) Crescimento e sobrevivência de castanheira (Bertholletia excelsa Bonpl.) em diferentes condições ambientais na região do rio Trombetas, Oriximiná, Pará. Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais 6: 273293.Google Scholar
Sheil, D, Burslem, DFRP (2003) Disturbing hypotheses in tropical forests. Trends in Ecology and Evolution 18: 1826.10.1016/S0169-5347(02)00005-8CrossRefGoogle Scholar
Shepard, GH, Ramirez, H (2011) ‘Made in Brazil’: human dispersal of the Brazil nut (Bertholletia excelsa, Lecythidaceae) in ancient Amazonia. Economic Botany 65: 4465.10.1007/s12231-011-9151-6CrossRefGoogle Scholar
Shomaker, TS, Green, EM, Yandow, SM (2013) Perspective: one health: a compelling convergence. Academic Medicine 88: 4955.10.1097/ACM.0b013e31827651b1CrossRefGoogle ScholarPubMed
Silvius, KM, Fragoso, JMV (2003) Red-rumped agouti (Dasyprocta leporina) home range use in an Amazonian forest: implications for the aggregated distribution of forest trees. Biotropica 35: 7483.Google Scholar
Sombroek, WG (1966) Amazon Soils: A Reconnaissance of the Soils of the Brazilian Amazon Region. Wageningen, The Netherlands: Centre for Agricultural Publications and Documentation.Google Scholar
Soriano, M, Kainer, KA, Staudhammer, CL, Soriano, E (2012) Implementing multiple forest management in Brazil nut-rich community forests: effects of logging on natural regeneration and forest disturbance. Forest Ecology and Management 268: 92102.10.1016/j.foreco.2011.05.010CrossRefGoogle Scholar
Sousa, DG, Almeida, SS, Amaral, DD (2014) Population structure of managed Brazil nut trees (Bertholletia excelsa) in the Caxiuanã National Forest, Pará. Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais 9: 353370.10.46357/bcnaturais.v9i2.530CrossRefGoogle Scholar
Szott, LT, Palm, CA, Buresh, RJ (1999) Ecosystem fertility and fallow function in the humid and subhumid tropics. Agroforestry Systems 47: 163196.10.1023/A:1006215430432CrossRefGoogle Scholar
ter Steege H, Prado PI, Lima RAFd, Pos E, de Souza Coelho L, de Andrade Lima Filho D et al. (2020) Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports 10: 113.Google Scholar
Thomas, E, Alcázar Caicedo, C, Mcmichael, CH, Corvera, R, Loo, J (2015) Uncovering spatial patterns in the natural and human history of Brazil nut (Bertholletia excelsa) across the Amazon Basin. Journal of Biogeography 42: 13671382.10.1111/jbi.12540CrossRefGoogle Scholar
Thomas, E, Atkinson, R, Kettle, C (2018) Fine-scale processes shape ecosystem service provision by an Amazonian hyperdominant tree species. Scientific Reports 8: 11690.CrossRefGoogle Scholar
Thomas, E, Caicedo, CA, Loo, J, Kindt, R (2014) The distribution of the Brazil nut (Bertholletia excelsa) through time: from range contraction in glacial refugia, over human-mediated expansion, to anthropogenic climate change. Boletin del Museo Paraense Emilio Goeldi. Ciencias Naturales 9: 267291.10.46357/bcnaturais.v9i2.525CrossRefGoogle Scholar
Tonini, H, Lopes, C, Borges, R, KaminskiI P, Alves M, Fagundes P (2014) Fenologia, estrutura e produção de sementes em castanhais nativos de Roraima e características socioeconômicas dos extrativistas. Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais 9: 399414.10.46357/bcnaturais.v9i2.533CrossRefGoogle Scholar
Tourne, DCM, Ballester, MVR, James, PMA, Martorano, LG, Guedes, MC, Thomas, E (2019) Strategies to optimize modeling habitat suitability of Bertholletia excelsa in the Pan-Amazonia. Ecology and Evolution 9: 1262312638.10.1002/ece3.5726CrossRefGoogle ScholarPubMed
Trauernicht, C, Brook, BW, Murphy, BP, Williamson, GJ, Bowman, DMJS (2015) Local and global pyrogeographic evidence that Indigenous fire management creates pyrodiversity. Ecology and Evolution 5: 19081918.CrossRefGoogle ScholarPubMed
Trovatto, CMM, Bianchini, V, de Souza, C, Medaets, JP, Ruano, O (2017) A construção da política nacional de agroecologia e produção orgânica: um olhar sobres a gestão do primeiro plano nacional de agroecologia e produção orgânica. In: Sambuichi, RHR, de Moura, IF, de Mattos, LM, de Ávila, ML, Spínola, PAC, da Silva, APM (eds), A política nacional de agroecologia e produção orgânica no Brasil : uma trajetória rural de luta pelo desenvolvimento sustentável (pp. 118145). Brasília, Brazil: Ipea.Google Scholar
Vieira, S, Trumbore, S, Camargo, PB, Selhorst, D, Chambers, JQ, Higuchi, N et al. (2005) Slow growth rates of Amazonian trees: consequences for carbon cycling. Proceedings of the National Academy of Sciences of the United States of America 102: 1850218507.10.1073/pnas.0505966102CrossRefGoogle ScholarPubMed
Wadt LHdO, Kainer, KA, Silva, DAPG (2005) Population structure and nut yield of a Bertholletia excelsa stand in southwestern Amazonia. Forest Ecology and Management 211: 371384.Google Scholar
Wadt LHdO, Kainer, KA, Staudhammer, CL, Serrano, ROP (2008) Sustainable forest use in Brazilian extractive reserves: natural regeneration of Brazil nut in exploited populations. Biological Conservation 141: 332346.Google Scholar
Yanai, AM, de Alencastro Graça, PML, Ziccardi, LG, Escada, MIS, Fearnside, PM (2022) Brazil’s Amazonian deforestation: the role of landholdings in undesignated public lands. Regional Environmental Change 22: 30.10.1007/s10113-022-01897-0CrossRefGoogle Scholar
Zeidemann, V, Kainer, KA, Staudhammer, CL (2014) Heterogeneity in NTFP quality, access and management shape benefit distribution in an Amazonian extractive reserve. Environmental Conservation 41: 242252.10.1017/S0376892913000489CrossRefGoogle Scholar
Zuidema, PA (2003) Ecology and management of the Brazil nut tree (Bertholletia excelsa). PROMAB Scientific Series 112. Riberalta, Bolivia: PROMAB.Google Scholar
Zuidema, PA, Boot, RGA (2002) Demography of the Brazil nut tree (Bertholletia excelsa) in the Bolivian Amazon: impact of seed extraction on recruitment and population dynamics. Journal of Tropical Ecology 18: 131.CrossRefGoogle Scholar