Hostname: page-component-cb9f654ff-c75p9 Total loading time: 0 Render date: 2025-08-17T08:59:45.917Z Has data issue: false hasContentIssue false

Comparison of Pedogenic and Sedimentary Greigite by X-ray Diffraction and Mössbauer Spectroscopy

Published online by Cambridge University Press:  28 February 2024

Helge Stanjek
Affiliation:
Lehrstuhl für Bodenkunde der Technischen, Universität München, D-85350 Freising-Weihenstephan, Germany
Enver Murad*
Affiliation:
Lehrstuhl für Bodenkunde der Technischen, Universität München, D-85350 Freising-Weihenstephan, Germany
*
*Present address: Bayerisches Geologisches Landesamt, Concordiastrasse 28, D-96049 Bamberg, Germany

Abstract

Greigites from a gley and a Tertiary sediment were investigated by X-ray diffraction and Mössbauer spectroscopy. The cell-edge length a of 9.8639 Å ± 0.0003 Å for the soil greigite was significantly smaller than that of the sedimentary greigite (9.8737 Å ± 0.0004 Å), but both cell-edge lengths were smaller than the value given on JCPDS card #16-713 (9.876 Å). Both greigites had 440 as strongest peak rather than 311 (as indicated on JCPDS card #16-713), but the other relative intensities did not deviate from the values given on this card within experimental error. Mean X-ray diffraction coherence lengths of 23 ± 2 nm for the soil greigite and of 60 ± 5 nm for the sedimentary greigite suggest superparamagnetic behavior. Mössbauer spectra nevertheless comprised two sextets with hyperfine fields of about 31.2 T (tetrahedral sites) and 30.7 T (octahedral sites), which resemble published values. It is postulated that aggregation may play an important role in determining the magnetic properties of the described samples.

Information

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Auerswald, K., Stanjek, H., and Becher, H. H., (1992) Böden in Landschaftsausschnitten Bayerns IV. Bodenabfolge in Dogger—Lias—Sedimenten am Hesselberg: Landwirtschaftliches Jahrbuch 69, 7387.Google Scholar
Berner, R. A., (1969) Migration of iron and sulfur within anaerobic sediments during early diagenesis: Amer. J. Sci. 267, 1942.10.2475/ajs.267.1.19CrossRefGoogle Scholar
De Wolf, P. M., and Visser, J. W., (1988) Absolute intensities—Outline of a recommended practice: Powder Diff. 3, 202204.10.1017/S0885715600013488CrossRefGoogle Scholar
Dell, C. I., (1972) An occurrence of greigite in Lake Superior sediments: A mer. Mineral. 57, 13031304.Google Scholar
Giovanoli, F., (1979) Die remanente Magnetisierung von Seesedimenten: Ph.D. thesis, FB Geowissenschaften, Eidgenössische Technische Hochschule, Zürich, 198 pp.Google Scholar
Hoffmann, V., (1992) Greigite (Fe,S4): Magnetic properties and first domain observations: Phys. Earth Planet. Int. 70, 288301.10.1016/0031-9201(92)90195-2CrossRefGoogle Scholar
Hoffmann, V., Stanjek, H., and Murad, E., (1993) Mineralogical, magnetic and Mössbauer data of smythite (Fe9S11): Studia Geophys. Geodaet. 37, 366381.10.1007/BF01613583CrossRefGoogle Scholar
Janik, L. M., and Raupach, M., (1977) An iterative, least-squares program to separate infrared absorption spectra into their component bands: CSIRO Div. Soils Techn. Paper 35, 137.Google Scholar
Jedwab, J., (1967) Minéralisation en greigite de débris végétaux d'une vase récente (Grote Geul): Bull. Soc. Belge Geol. Paléont. Hydrol. 76, 2738.Google Scholar
Langford, J. I., and Wilson, A. J. C., (1978) Scherrer after sixty years: A survey and some new results in the determination of crystallite size: J. Appl. Crystall. 11, 102113.10.1107/S0021889878012844CrossRefGoogle Scholar
Klug, H. P., and Alexander, L. E., (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials: J. Wiley & Sons, New York, 966 pp.Google Scholar
Krs, M., Krsova, M., Pruner, P., Zeman, A., Novak, F., and Jansa, J., (1990) A petromagnetic study of Miocene rocks bearing micro-organic material and the magnetic mineral greigite (Sokolov and Cheb basins, Czechoslovakia): Phys. Earth Planet. Int. 63, 98112.10.1016/0031-9201(90)90064-5CrossRefGoogle Scholar
Mann, S., Sparks, N. H. C., Frankel, R. B., Bazylinski, D. A., and Jannasch, H. W., (1990) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium: Nature 343, 258261.10.1038/343258a0CrossRefGoogle Scholar
Ricci, J. C., Diaz, , and Kirschvink, J. L., (1992) Magnetic domain state and coercitivity predictions for biogenic greigite (Fe3S4): A comparison of theory with magnetosome observations: J. Geophys. Res. 97, 1730917315.10.1029/92JB01290CrossRefGoogle Scholar
Schwertmann, U., and Murad, E., (1988) The nature of an iron oxide-organic iron association in a peaty environment: Clay Miner. 23, 291299.10.1180/claymin.1988.023.3.06CrossRefGoogle Scholar
Skinner, B. J., Erd, R. C., and Grimaldi, R. F., (1964) Greigite, the thiospinel of iron: A new mineral: Amer. Mineral. 49, 543555.Google Scholar
Snowball, I. F., (1988) The occurrence of greigite in the sediments of Loch Lomond: J. Quater. Sci. 3, 121125.CrossRefGoogle Scholar
Stanjek, H., (1991). Aluminium- und Hydroxylsubstitution in synthetischen und natürlichen Hämatiten: Ph.D. thesis, TU-München, Marie L. Leidorf, Buch am Erlbach, 200 pp.Google Scholar
Stanjek, H., Fassbinder, J. W. E., Vali, H., Wägele, H., and Graf, W., (1994) Evidence of biogenic greigite (ferrimagnetic Fe3S4) in soil: Eur. J. Soil Sci. 45, 97103.10.1111/j.1365-2389.1994.tb00490.xCrossRefGoogle Scholar
Vandenberghe, R. E., De Grave, E., de Bakker, P. M. A., Krs, M., and Hus, J. J., (1991) Mössbauer study of natural greigite: Hyperfine Inter. 68, 319322.10.1007/BF02396500CrossRefGoogle Scholar