Hostname: page-component-54dcc4c588-rz4zl Total loading time: 0 Render date: 2025-10-13T02:19:10.219Z Has data issue: false hasContentIssue false

Cation exchange reactions of vermiculite with Cu-triethylenetetramine as affected by mechanical and chemical pretreatment

Published online by Cambridge University Press:  01 January 2024

Annett Steudel*
Affiliation:
Competence Center for Material Moisture (CMM), University Karlsruhe c/o IFG, Forschungszentrum Karlsruhe Germany Institute of Functional Interfaces, (IFG), Forschungszentrum Karlsruhe GmbH, Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
Peter G. Weidler
Affiliation:
Institute of Functional Interfaces, (IFG), Forschungszentrum Karlsruhe GmbH, Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
Rainer Schuhmann
Affiliation:
Competence Center for Material Moisture (CMM), University Karlsruhe c/o IFG, Forschungszentrum Karlsruhe Germany Institute of Functional Interfaces, (IFG), Forschungszentrum Karlsruhe GmbH, Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
Katja Emmerich
Affiliation:
Competence Center for Material Moisture (CMM), University Karlsruhe c/o IFG, Forschungszentrum Karlsruhe Germany Institute of Functional Interfaces, (IFG), Forschungszentrum Karlsruhe GmbH, Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany

Abstract

The cation exchange capacity (CEC) is a characteristic property of expandable clay minerals, such as smectites and vermiculites. The aim of this work was to examine the cation exchange behavior of vermiculite using the Cu-triethylenetetramine (Cu-trien) CEC method and the influence of mechanical and chemical pretreatment, with the ammonium acetate method serving as a reference. The Cu-trien method makes rapid and direct CEC measurements possible. Three different kinds of mill were used to grind a vermiculite sample from Russia, in order to reduce the particle size to <10 µm. The Netzsch CGS 10 dry mill reduced the particle size more effectively than the other grinding methods. Chemical pretreatments were used to remove carbonates, organic matter, Fe oxides, and divalent exchangeable cations from vermiculite samples prior to CEC measurements. Subsamples of ground and chemically pretreated vermiculite samples were saturated with Na, Li, Mg, Ca, and Cu cations to determine the effect of exchangeable cations on measured CEC values. Chemical pretreatment, monovalent cation pretreatment, and 48 h of shaking time were needed to measure vermiculite CEC values effectively using the Cu-trien method.

Information

Type
Article
Copyright
© The Clay Minerals Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abate, G Masini, JC, Influence of pH, ionic strength, and humic acid on adsorption of Cd(II) and Pb(II) onto vermiculite Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005 262 3339 10.1016/j.colsurfa.2005.04.005.CrossRefGoogle Scholar
Abollino, O Giacomino, A Malandrino, M Mentasti, E, Interaction of metal ions with montmorillonite and vermiculite Applied Clay Science 2008 38 227236 10.1016/j.clay.2007.04.002.CrossRefGoogle Scholar
Amman, L Bergaya, F Lagaly, G, Determination of the cation exchange capacity of clays with copper complexes revisited Clay Minerals 2005 40 441453 10.1180/0009855054040182.CrossRefGoogle Scholar
Ballard, DGH Rideal, GR, Flexible inorganic films and coating Journal of Materials Science 1983 18 545561 10.1007/BF00560644.CrossRefGoogle Scholar
de la D’Espinose Caillerie, J-B Fripiat, JJ, Dealumination and aluminum intercalation of vermiculite Clays and Clay Minerals 1991 39 270280 10.1346/CCMN.1991.0390307.CrossRefGoogle Scholar
Emmerich, K, Die geotechnische Bedeutung des Dehydroxylierungsverhalten quellfahiger Tonminerale 2000 Switzerland ETH Zurich 143 pp.Google Scholar
Garrett, WG Walker, GF, Swelling of some vermiculite-organic complexes in water Clays and Clay Minerals 1960 9 557567 10.1346/CCMN.1960.0090141.Google Scholar
Ghabru, SK Mermut, AR Arnaud, RJ St, Layer-charge and cation-exchange characteristics of vermiculite (weathered biotite) isolated froma Gray Luvisol in northeastern Saskatchewan Clays and Clay Minerals 1989 37 164172 10.1346/CCMN.1989.0370208.CrossRefGoogle Scholar
v. Graf Reichenbach, H, Anomalien des Kationenaustausches bei Vermiculiten Zeitschrift für Pflanzenernährung, Düngung ünd Bodenkunde 1966 113 203213 10.1002/jpln.19661130304.CrossRefGoogle Scholar
de Jimenez Haro, MC Martínez Blanes, JM Poyato, J Pérez-Magueda, LA Lerf, A Pérez-Rodríquez, JL, Effects of mechanical treatment and exchanged cation on the microporosity of vermiculite Journal of Physics and Chemistry of Solids 2004 65 435439 10.1016/j.jpcs.2003.08.033.CrossRefGoogle Scholar
Konta, J, Clay and man: clay new material in the service of man Applied Clay Science 1995 10 275335 10.1016/0169-1317(95)00029-4.CrossRefGoogle Scholar
Köster, HM, Die Berechnung kristallchemischer Strukturformeln von 2:1-Schichtsilikaten unter Berücksichtigung der gemessenen Zwischenschichtladungen und Kationenumtauschkapazitäten, sowie die Darstellung der Ladungsverteilung in der Struktur mittels Dreieckskoordinaten Clay Minerals 1977 12 4554 10.1180/claymin.1977.012.1.03.CrossRefGoogle Scholar
Lagaly, G, Mermut, AR, Layer charge determination by alkylammoniumions Layer Charge Characteristics of 2:1 Silicate Clay Minerals 1994 Boulder. Colorado, USA The Clay Minerals Society 146.Google Scholar
Lagaly, G, Layer charge heterogeneity in vermiculites Clays and Clay Minerals 1982 30 215222 10.1346/CCMN.1982.0300308.CrossRefGoogle Scholar
Lagaly, G. and Weiss, A. (1969) Determination of the layer charge in mica-type layer silicates. 3rd International Clay Conference, Tokyo, Japan, pp. 6280.Google Scholar
Mackenzie, RC, A micromethod for determination of cation-exchange capacity of clay Journal of Colloid Science 1951 6 219222.Google Scholar
Maqueda, C Romero, AS Morillo, E Pérez-Rodríquez, JL, Effect of grinding on the preparation of porous materials by acid-leached vermiculite Journal of Physics and Chemistry of Solids 2007 68 12201224 10.1016/j.jpcs.2007.01.037.CrossRefGoogle Scholar
Maqueda, C Romero, AS Morillo, E Pérez-Rodríquez, JL Lerf, A Wagner, FE, The behaviour of Fe in ground and acid-treated vermiculite from Santa Olalla. Spain Clays and Clay Minerals 2008 56 380388 10.1346/CCMN.2008.0560307.CrossRefGoogle Scholar
Mehra, O.P. and Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate-system buffered with sodium bicarbonate. 7th National Conference on Clays and Clay Minerals, Washington, D.C., USA, pp. 317327.Google Scholar
Meier, LP Kahr, G, Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine Clays and Clay Minerals 1999 47 386388 10.1346/CCMN.1999.0470315.CrossRefGoogle Scholar
Olis, AC Malla, PB Douglas, LA, The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion Clay Minerals 1990 25 3950 10.1180/claymin.1990.025.1.05.CrossRefGoogle Scholar
Osman, MA, Organo-vermiculites: synthesis, structure and properties. Platelike nanoparticles with high aspect ratio Journal of Materials Chemistry 2006 16 30073013 10.1039/b606036f.CrossRefGoogle Scholar
Perez-Maqueda, LA Caneo, OB Poyato, J Pérez-Rodríquez, JL, Preparation and characterization of micron and submicron-sized vermiculite Physics and Chemistry of Minerals 2001 28 6166 10.1007/s002690000133.CrossRefGoogle Scholar
Pérez-Maqueda, LA de Jiménez Haro, MC Poyato, J Pérez-Rodríquez, JL, Comparative study of ground and sonicated vermiculite Journal of Materials Science 2004 39 53475351 10.1023/B:JMSC.0000039242.67213.4d.CrossRefGoogle Scholar
Pérez-Rodríquez, JL Carrera, F Poyato, F Pérez-Maqueda, LA, Sonication as a tool for preparing nanometric vermiculite particles Nanotechnology 2002 13 382387 10.1088/0957-4484/13/3/328.CrossRefGoogle Scholar
Ramírez-Valle, V Lerf, A Wagner, FE Poyato, J Pérez-Rodríquez, JL, Thermal study of polypyrrole complexes with vermiculites of different layer charge Journal of Thermal Analysis and Calorimetry 2008 92 4351 10.1007/s10973-007-8734-z.CrossRefGoogle Scholar
Rich, CI, Calcium determination for cation-exchange capacity measurements Soil Science Society of America Journal 1961 92 226231 10.1097/00010694-196110000-00002.CrossRefGoogle Scholar
Suquet, H Chevalier, S Marcilly, C Barthomeuf, D, Preparation of porous materials by chemical activation of the Llano vermiculite Clay Minerals 1991 26 4960 10.1180/claymin.1991.026.1.06.CrossRefGoogle Scholar
Temuujin, J Okada, K McKenzie, KJD, Preparation of porous silica from vermiculite by selective leaching Applied Clay Science 2003 22 187195 10.1016/S0169-1317(02)00158-8.CrossRefGoogle Scholar
Tributh, H Lagaly, G, Aufbereitung und Identifizierung von Boden- und Lagerstättentonen Teil I -Aufbereitung der Proben imLabor GIT Fachzeitschrift für das Laboratorium 1986 30 524529.Google Scholar
Wiewióra, A Pérez-Rodríguez, JL Pérez-Maqueda, LA Drapala, J, Particle size distribution in sonicated high- and low-charged vermiculites Applied Clay Science 2003 24 5158 10.1016/S0169-1317(03)00133-9.CrossRefGoogle Scholar
Wolters, F Lagaly, G Kahr, G Nueesch, R Emmerich, K, A comprehensive characterisation of dioctahedral smectites Clays and Clay Minerals 2009 57 104114 10.1346/CCMN.2009.0570111.CrossRefGoogle Scholar