Hostname: page-component-84c44f86f4-vnpbn Total loading time: 0 Render date: 2025-10-14T09:53:28.542Z Has data issue: false hasContentIssue false

AFM study of smectites in hybrid Langmuir-Blodgett films: Saponite, Wyoming bentonite, hectorite, and Laponite

Published online by Cambridge University Press:  01 January 2024

Tamás Szabó
Affiliation:
Centre for Surface Chemistry and Catalysis, K.U.Leuven Kasteelpark Arenberg 23 3001 Leuven Belgium Department of Colloid Chemistry, University of Szeged Aradi Vt 1 H-6720 Szeged Hungary
Jun Wang
Affiliation:
Centre for Surface Chemistry and Catalysis, K.U.Leuven Kasteelpark Arenberg 23 3001 Leuven Belgium Chemistry College, Huazhong Normal University 430079 Wuhan Hubei China
Alexander Volodin
Affiliation:
Department of Physics and Astronomy, K.U. Leuven Celestijnenlaan 200D 3001 Leuven Belgium
Chris van Haesendonck
Affiliation:
Department of Physics and Astronomy, K.U. Leuven Celestijnenlaan 200D 3001 Leuven Belgium
Imre Dekany
Affiliation:
Department of Colloid Chemistry, University of Szeged Aradi Vt 1 H-6720 Szeged Hungary
Robert A. Schoonheydt*
Affiliation:
Centre for Surface Chemistry and Catalysis, K.U.Leuven Kasteelpark Arenberg 23 3001 Leuven Belgium

Abstract

The sizes and shapes of single clay mineral layers are difficult to determine though they are important parameters which determine the final properties of clay polymer nanocomposites and of ultrathin clay mineral films. To determine these sizes and shapes, hybrid monolayers of clay minerals (saponite, hectorite, Wyoming bentonite, and Laponite) and Rhodamine B octadecyl ester Perchlorate (RhB18) were prepared using the Langmuir-Blodgett (LB) technique and studied with atomic force microscopy (AFM). The AFM images reveal monolayers of elementary clay mineral layers, which are randomly oriented and have a wide range of sizes. The layers have typical shapes: lath-like for hectorite, plates for Wyoming bentonite, a mixture of laths and plates for saponite, and aggregates of very small layers of Laponite. Two types of layers were present in the LB films of saponite, Wyoming bentonite, and hectorite in a 40:60 ratio: (1) single layers 0.96 nm thick hybridized with RhB18; and (2) particles consisting of two clay layers with an intercalated monomolecular layer of water molecules and hybridized with RhB18. The Laponite particles in the hybrid LB films consist mainly of aggregates of two and three single layers.

Information

Type
Article
Copyright
© The Clay Minerals Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Balnois, E Durand-Vidal, S Levitz, P, Probing the morphology of laponite clay colloids by atomic force microscopy Langmuir 2003 19 66336637 10.1021/la0340908.CrossRefGoogle Scholar
Beutelspacher, H van der Marel, HW, Atlas of Electron Microscopy of Clay Minerals and their Admixtures: A Picture Atlas 1968 Amsterdam Elsevier 10.1097/00010694-196809000-00021 333 pp.CrossRefGoogle Scholar
Bickmore, BR Hochella, MF Bosbach, D Charlet, L, Methods for performing atomic force microscopy imaging of clay minerals in aqueous solutions Clays and Clay Minerals 1999 47 573581 10.1346/CCMN.1999.0470504.CrossRefGoogle Scholar
Bickmore, BR Nagy, KL Sandlin, PE Crater, TS, Quantifying surface areas of clays by atomic force microscopy American Mineralogist 2002 87 780783 10.2138/am-2002-5-622.CrossRefGoogle Scholar
Bujdak, J, Effects of layer charge of clay minerals on optical properties of organic dyes. A review Applied Clay Science 2006 34 5873 10.1016/j.clay.2006.02.011.CrossRefGoogle Scholar
Cadene, A Durand-Vidal, S Turq, P Brendle, J, Study of individual Na-montmorillonite particle size, morphology and apparent charge Journal of Colloid and Interface Science 2005 285 719730 10.1016/j.jcis.2004.12.016.CrossRefGoogle Scholar
Čapková, P Mal, P Pospíšil, M Klika, Z Weissmonová, H Weiss, Z, Effect of surface and interlayer structure on the fluorescence of rhodamine B-montmorillonite: modeling and experiment Journal of Colloid and Interface Science 2004 277 128137 10.1016/j.jcis.2004.03.035.CrossRefGoogle ScholarPubMed
Carrado, KA Bergaya, F, Clay-based polymer nano-composites (CPN) 2007 Chantilly, Virginia, USA The Clay Minerals Society 278 pp.CrossRefGoogle Scholar
Cenens, J Schoonheydt, RA, Visible spectroscopy of methylene blue on hectorite, laponite B and barasym in aqueous suspension Clays and Clay Minerals 1988 36 214224 10.1346/CCMN.1988.0360302.CrossRefGoogle Scholar
Klika, Z Weissmonová, H Čapková, P Pospíšil, M, The rhodamine B intercalation of montmorillonite Journal of Colloid and Interface Science 2004 275 243250 10.1016/j.jcis.2004.02.040.CrossRefGoogle ScholarPubMed
Lindgreen, H Garnaes, J Hansen, PL Besenbacher, F Laesgaard, E Stensgaard, I Gould, SAC Hansma, PK, Ultrafine particles of North Sea illite/smectite clay minerals investigated by STM and AFM American Mineralogist 1991 76 12181222.Google Scholar
Ras, RHA Johnston, CT Franses, EI Ramaekers, R Maes, G Foubert, P De Schryver, FC Schoonheydt, RA, Polarized infrared study of hybrid Langmuir-Blodgett monolayers containing clay minerals Langmuir 2003 19 42954302 10.1021/la026786r.CrossRefGoogle Scholar
Ras, RHA Németh, J Johnston, CT DiMasi, E Dékany, I Schoonheydt, RA, Hybrid Langmuir-Blodgett monolayers containing clay minerals: effect of clay concentration and layer charge density on the film formation Physical Chemistry Chemical Physics 2004 6 41744184 10.1039/B405862C.CrossRefGoogle Scholar
Ras, RHA Németh, J Johnston, CT Dékany, I Schoonheydt, RA, Orientation and conformation of octadecyl rhodamine B in hybrid Langmuir-Blodgett monolayers containing clay minerals Physical Chemistry Chemical Physics 2004 6 53475352 10.1039/B411339J.CrossRefGoogle Scholar
Ras, RHA Umemura, Y Johnston, CT Yamagishi, A Schoonheydt, RA, Ultrathin hybrid films of clay minerals Physical Chemistry Chemical Physics 2007 9 918932 10.1039/B610698F.CrossRefGoogle ScholarPubMed
Roberts, GG, Langmuir-Blodgett Films 1990 New York Plenum Press 10.1007/978-1-4899-3716-2.CrossRefGoogle Scholar
Ruiz-Hitzky, E Ariya, K Lvov, Yu, Bio-inorganic Hybrid Nanomaterials 2008 Germany Wiley-VCH, Weinheim 503 pp.Google Scholar
Tournassat, C Neaman, A Villiéras, F Bosbach, D Charlet, L, Nanomorphology of montmorillonite particles: estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations American Mineralogist 2003 88 19891995 10.2138/am-2003-11-1243.CrossRefGoogle Scholar
Yariv, S, Yariv, S Cross, H, Staining of clay minerals and visible absorption spectroscopy of dye-clay complexes Organo-clay Complexes and Interactions 2001 New York Marcel Dekker 463566 10.1201/9781482270945.CrossRefGoogle Scholar
Zbik, M Smart, RStC, Nanomorphology of kaolinites: comparative SEM and AFM studies Clays and Clay Minerals 1998 46 153160 10.1346/CCMN.1998.0460205.CrossRefGoogle Scholar