Hostname: page-component-54dcc4c588-mz6gc Total loading time: 0 Render date: 2025-10-08T08:41:33.633Z Has data issue: false hasContentIssue false

Inner- and outer-surface modification of Algerian halloysite nanotubes with triethoxy(octyl)silane and caffeic acid for enhanced functional properties

Published online by Cambridge University Press:  26 August 2025

Zeyneb Abir Mekhania*
Affiliation:
Laboratoire des Silicates, Polymères et des Nanocomposites (LSPN), Université 8 Mai 1945, Guelma, Algeria
Kahina Iggui
Affiliation:
Département de Technologie Chimique Industrielle, Institut de Technologie, Université de Bouira, Bouira, Algeria Laboratoire des Matériaux Polymères Avancés, Faculté de Technologie, Université de Bejaia, Bejaia, Algeria
Nora Benkacher
Affiliation:
Laboratoire des Silicates, Polymères et des Nanocomposites (LSPN), Université 8 Mai 1945, Guelma, Algeria
Aida Benhamida
Affiliation:
Laboratoire des Silicates, Polymères et des Nanocomposites (LSPN), Université 8 Mai 1945, Guelma, Algeria
Nadjette Bengourna
Affiliation:
Laboratoire des Silicates, Polymères et des Nanocomposites (LSPN), Université 8 Mai 1945, Guelma, Algeria
Atmane Djermoune
Affiliation:
Technical Platform for Physico-chemical Analyzes (PTAPC-Bejaia), Scientific and Technical Research Center in Physical and Chemical Analyses (CRAPC), Tipaza, Algeria
Farid Ait Merzeg
Affiliation:
Technical Platform for Physico-chemical Analyzes (PTAPC-Bejaia), Scientific and Technical Research Center in Physical and Chemical Analyses (CRAPC), Tipaza, Algeria
Hamid Satha
Affiliation:
Laboratoire des Silicates, Polymères et des Nanocomposites (LSPN), Université 8 Mai 1945, Guelma, Algeria
Abdelheq Layachi
Affiliation:
Laboratoire des Silicates, Polymères et des Nanocomposites (LSPN), Université 8 Mai 1945, Guelma, Algeria Institut des Sciences et des Techniques Appliquées (ISTA), Université Frères Mentouri Constantine 1, Constantine, Algeria
*
Corresponding author: Zeyneb Abir Mekhania; Email: mekhaniazeineb@gmail.com

Abstract

Halloysite nanotubes (HNTs) face significant challenges in their application due to their aggregation, poor dispersion and high hydrophilicity, which limit their integration into polymer matrices. This study introduces a novel functionalization strategy for Algerian HNTs, targeting their inner and outer surfaces with triethoxy(octyl)silane (OTES) for silanization and caffeic acid (CA) for lumen loading. Comprehensive characterization techniques were used to analyse pristine and OTES-modified HNTs (O-HNTs) and CA-loaded HNTs (CA-HNTs) to evaluate the impacts of both selective agents, which successfully altered the structural, textural, chemical, morphological and thermal HNTs properties. The crystalline structure and changes in crystallite size following surface modification were determined using X-ray diffraction analysis. Brunauer–Emmett–Teller analysis showed that the surface area of O-HNTs increased to 74 m2 g–1 compared to 54 m2 g–1 for HNTs, whereas CA-HNTs experienced a surface area decrease to 42 m2 g–1 owing to pore obstruction, with the pore sizes shifting to 10–12 nm for O-HNTs and to 16 nm for CA-HNTs. Fourier-transform infrared spectroscopy and X-ray fluorescence confirmed effective surface modification through the achievement of successful chemical bonding and a shift in the elemental composition. Morphological analysis using scanning electron microscopy revealed considerable morphological changes in both treatments, and thermogravimetric analysis demonstrated that the thermal stability of HNTs modified with CA was improved, with a higher decomposition peak at 520°C. These modifications effectively improved the dispersion, thermal stability and compatibility of the HNTs, highlighting the potential of the modified Algerian HNTs as promising green nanofillers in polymer nanocomposite applications, such as active packaging and thermal insulation coatings.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdullayev, E., Joshi, A., Wei, W., Zhao, Y. & Lvov, Y. (2012) Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano, 6, 72167226.Google Scholar
Abu El-Soad, A.M., Lazzara, G., Pestov, A.V., Tambasova, D.P., Antonov, D.O., Cavallaro, G. & Kovaleva, E.G. (2021) Grafting of (3-chloropropyl)-trimethoxysilane on halloysite nanotubes surface. Applied Sciences, 11, 5530.Google Scholar
Abu El-Soad, A.M., Pestov, A.V., Tambasova, D.P., Osipova, V.A., Martemyanov, N.A., Cavallaro, G. et al. (2020) Insights into grafting of (3-mercaptopropyl) trimethoxysilane on halloysite nanotubes surface. Journal of Organometallic Chemistry, 915, 121224.Google Scholar
Açışlı, Ö., Karaca, S. & Gürses, A. (2017) Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (Mt) from aqueous solutions. Applied Clay Science, 142, 9099.Google Scholar
Anbalagan, G., Sivakumar, G., Prabakaran, S. & Gunasekaran, S. (2010) Spectroscopic characterization of natural mineral halloysite. Vibrational Spectroscopy, 52, 122127.Google Scholar
Arat, R. & Uyanık, N. (2017) Surface modification of nanoclays with styrene-maleic anhydride copolymers. Natural Resources, 8, 159171.Google Scholar
Bao, Z., Yan, Y. & Han, W. (2024) Investigation of γ-aminopropyltriethoxysilane (APTES)-modified halloysite nanotubes on the reinforcement of halloysite/polypropylene (PP) nanocomposites. Polymers, 16, 1114.Google Scholar
Belkassa, K., Bessaha, F., Marouf-Khelifa, K., Batonneau-Gener, I., Comparot, J.D. & Khelifa, A. (2013) Physicochemical and adsorptive properties of a heat-treated and acid-leached Algerian halloysite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 421, 2633.Google Scholar
Belver, C., Bañares Muñoz, A.B. & Vicente, M.A. (2002) Chemical activation of a kaolinite under acid and alkaline conditions. Chemistry of Materials, 14, 20332043.Google Scholar
Biddeci, G., Cavallaro, G., Di, Blasi F., Lazzara, G., Massaro, M., Milioto, S. et al. (2016) Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film. Carbohydrate Polymers, 152, 548557.Google Scholar
Biddeci, G., Spinelli, G., Colomba, P. & Di Blasi, F. (2022) Nanomaterials: a review about halloysite nanotubes, properties, and application in the biological field. International Journal of Molecular Sciences, 23, 11518.Google Scholar
Biddeci, G., Spinelli, G., Colomba, P. & Di Blasi, F. (2023) Halloysite nanotubes and sepiolite for health applications. International Journal of Molecular Sciences, 24, 4801.Google Scholar
Bischoff, E., Daitx, T., Simon, D.A., Schrekker, H.S., Liberman, S.A. & Mauler, R.S. (2015) Organosilane-functionalized halloysite for high performance halloysite/heterophasic ethylene–propylene copolymer nanocomposites. Applied Clay Science, 112113, 6874.Google Scholar
Boccalon, E., Sassi, P., Pioppi, L., Ricci, A., Marinozzi, M., Gorrasi, G. & Nocchetti, M. (2022) Onion skin extract immobilized on halloysite-layered double hydroxide filler as active pH indicator for food packaging. Applied Clay Science, 227, 106611.Google Scholar
Boucenna, Y., Layachi, A., Cherfia, A., Laoutid, F. & Satha, H. (2023) Non-isothermal crystallization kinetics and activation energy for crystal growth of polyamide 66/short glass fiber/carbon black composites. Materials, 16, 2034.Google Scholar
Brindley, G.W. & Brown, G., editors (1980) Crystal Structure of Clay Minerals and Their X-Ray Identification. Mineralogical Society, London, UK, 504 pp.Google Scholar
Bugatti, V., Sorrentino, A. & Gorrasi, G. (2017) Encapsulation of lysozyme into halloysite nanotubes and dispersion in PLA: structural and physical properties and controlled release analysis. European Polymer Journal, 93, 495506.Google Scholar
Bukas, V.J., Tsampodimou, M., Gionis, V. & Chryssikos, G.D. (2013) Synchronous ATR infrared and NIR-spectroscopy investigation of sepiolite upon drying. Vibrational Spectroscopy, 68, 5160.Google Scholar
Butun Sengel, S., Tunca, N., Deveci, H., Bas, H. & Butun, V. (2023) Smart materials and their advanced biomedical applications: HNT and HNT–polymer composites. Smart Materials in Medicine, 4, 955974.Google Scholar
Çankaya, N., Ünal, A. & Korcan, S.E. (2024) Comparison of the antimicrobial and antioxidant properties of halloysite nanotubes and organoclays as green source materials. Clay Minerals, 59, 110.Google Scholar
Carli, L.N., Daitx, T.S., Soares, G.V., Crespo, J.S. & Mauler, R.S. (2014) The effects of silane coupling agents on the properties of PHBV/halloysite nanocomposites. Applied Clay Science, 87, 311319.Google Scholar
Chen, S., Yang, Z. & Wang, F. (2018) Investigation on the properties of PMMA/reactive halloysite nanocomposites based on halloysite with double bonds. Polymers, 10, 1038.Google Scholar
Cheng, Z.-L., Chang, X.-Y., Liu, Z., Qin, D.-Z. & Zhu, A.-P. (2017) High-performance PTFE nanocomposites based on halloysite nanotubes. Clay Minerals, 52, 427438.Google Scholar
Elmi, C. (2023) Physical–chemical properties of nano-sized phyllosilicates: recent environmental and industrial advancements. Encyclopedia, 3, 14391460.Google Scholar
Fahimizadeh, M., Wong, L.W., Baifa, Z., Sadjadi, S., Auckloo, S.A.B., Palaniandy, K. et al. (2024) Halloysite clay nanotubes: innovative applications by smart systems. Applied Clay Science, 256, 107423.Google Scholar
Fu, H., Wang, Y., Li, X. & Chen, W. (2016) Synthesis of vegetable oil-based waterborne polyurethane/silver–halloysite antibacterial nanocomposites. Composites Science and Technology, 126, 8693.Google Scholar
Gaaz, T.S., Sulong, A.B., Kadhum, A.A.H., Al-Amiery, A.A., Nassir, M.H. & Jaaz, A.H. (2017) The impact of halloysite on the thermo-mechanical properties of polymer composites. Molecules, 22, 838.Google Scholar
Ganapathy, D., Shanmugam, R., Pitchiah, S., Murugan, P., Chinnathambi, A., Alharbi, S.A. et al. (2022) Potential applications of halloysite nanotubes as drug carriers: a review. Journal of Nanomaterials, 2022, 8182967.Google Scholar
Garcia-Garcia, D., Ferri, J.M., Ripoll, L., Hidalgo, M., Lopez-Martinez, J. & Balart, R. (2017) Characterization of selectively etched halloysite nanotubes by acid treatment. Applied Surface Science, 422, 616625.Google Scholar
Garcia-Garcia, D., Garcia-Sanoguera, D., Fombuena, V., Lopez-Martinez, J. & Balart, R. (2018) Improvement of mechanical and thermal properties of poly(3-hydroxybutyrate) (PHB) blends with surface-modified halloysite nanotubes (HNT). Applied Clay Science, 162, 487498.Google Scholar
Guo, F., Aryana, S., Han, Y. & Jiao, Y. (2018) A review of the synthesis and applications of polymer–nanoclay composites. Applied Sciences, 8, 1696.Google Scholar
He, Y., Xu, W., Tang, R., Zhang, C. & Yang, Q. (2015) pH-responsive nanovalves based on encapsulated halloysite for the controlled release of a corrosion inhibitor in epoxy coating. RSC Advances, 5, 9060990620.Google Scholar
Hillier, S., Brydson, R., Delbos, E., Fraser, T., Gray, N., Pendlowski, H. et al. (2016) Correlations among the mineralogical and physical properties of halloysite nanotubes (HNTs). Clay Minerals, 51, 325350.Google Scholar
Jafazadeh, S. & Haddadi-Asl, V. (2023) Surface modification of halloysite nanotube with an amine terminated block copolymer. Journal of Polymer Research, 30, 423.Google Scholar
Jauković, V., Krajišnik, D., Daković, A., Damjanović, A., Krstić, J., Stojanović, J. & Čalija, B. (2021) Influence of selective acid-etching on functionality of halloysite–chitosan nanocontainers for sustained drug release. Materials Science and Engineering C, 123, 111973.Google Scholar
Jawwad Saif, M., Muhammad Asif, H. & Naveed, M. (2018) Properties and modification methods of halloysite nanotubes: a state-of-the-art review. Journal of Nanomaterials, 2018, 3450296.Google Scholar
Joussein, E., Petit, S. & Delvaux, B. (2007) Behavior of halloysite clay under formamide treatment. Applied Clay Science, 35, 1724.Google Scholar
Kassa, A., Benhamida, A., Kaci, M. & Bruzaud, S. (2020) Effects of montmorillonite, sepiolite, and halloysite clays on the morphology and properties of polycaprolactone bionanocomposites. Polymers and Polymer Composites, 28, 338347.Google Scholar
Katuwavila, N.P., Perera, A.D.L.C., Karunaratne, V., Amaratunga, G.A.J. & Karunaratne, D.N. (2016) Improved delivery of caffeic acid through liposomal encapsulation. Journal of Nanomaterials, 2016, 9701870.Google Scholar
Kaur, G., Gupta, S., Prakash, V., Rodriguez, R.D., Sheremet, E., Mehta, S.K. & Sharma, S. (2024) A comprehensive review of varied applications of modified halloysite nanocomposites. Nano-Structures & Nano-Objects, 39, 101230.Google Scholar
Kennouche, S., Le, Moigne N., Kaci, M., Quantin, J.-C., Caro-Bretelle, A.-S., Delaite, C. et al. (2016) Morphological characterization and thermal properties of compatibilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly(butylene succinate) (PBS)/halloysite ternary nanocomposites. European Polymer Journal, 75, 142162.Google Scholar
Kim, J.H., Kim, H.J., Lee, D., Yang, S.B., Yu, S., Kim, H.G. et al. (2025) Improvement adhesion durability of epoxy adhesive for steel/carbon fiber-reinforced polymer adhesive joint using imidazole-treated halloysite nanotube. Advanced Composites and Hybrid Materials, 8, 29.Google Scholar
Kokulnathan, T., Wang, T.J., Thangapandian, M. & Alaswad, S.O. (2020) Synthesis and characterization of hexagonal boron nitride/halloysite nanoparticles for biomedical applications. Applied Clay Science, 187, 105477.Google Scholar
Kouser, S.L., Prabhu, A., Prashantha, K., Nagaraja, G.K., D’Souza, A.M., Meghana, Navada K. et al. (2022) Modified halloysite nanoparticles with chitosan incorporated PVA/PVP bionanocomposite films: thermal, mechanical properties and biocompatibility for tissue engineering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 634, 127977.Google Scholar
Kouser, S.L., Sheik, S.K., Nagaraja, G.K., Prabhu, A., Prashantha, K., D’Souza, A.M. et al. (2020) Functionalization of halloysite nanoparticles with chitosan reinforced poly(vinyl alcohol) for potential biomedical applications. International Journal of Molecular Sciences, 165, 10791092.Google Scholar
Lazzara, G., Cavallaro, G., Panchal, A., Fakhrullin, R., Stavitskaya, A., Vinokurov, V. & Lvov, Y. (2018) An assembly of organic–inorganic composites using halloysite clay nanoparticles. Current Opinion in Colloid and Interface Science, 35, 4250.Google Scholar
Lei, X., Zhou, Y., Liu, X., Kong, L., Liao, L., Li, Y. et al. (2023) Effective pH-responsive nanocarrier based on the anisotropic surfaces of halloysite nanoparticles for controlled drug release. Applied Clay Science, 232, 106789.Google Scholar
Li, H., Zhu, X., Zhou, H. & Zhong, S. (2015) Functionalization of halloysite nanoparticles by enlargement and hydrophobicity for sustained release of analgesic. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 487, 154161.Google Scholar
Lim, K., Chow, W.S. & Pung, S.Y. (2019) Enhancement of thermal stability and UV resistance of halloysite nanoparticles using zinc oxide functionalization via a solvent-free approach. International Journal of Minerals, Metallurgy and Materials, 26, 787795.Google Scholar
Lim, S., Park, S. & Sohn, D. (2020) Modification of halloysite nanoparticles for enhancement of gas-adsorption capacity. Clays and Clay Minerals, 68, 189196.Google Scholar
Lisuzzo, L., Bertini, M., Lazzara, G., Ferlito, C., Ferrante, F. & Duca, D. (2023) A computational and experimental investigation of the anchoring of organosilanes on the halloysite silicic surface. Applied Clay Science, 245, 107133.Google Scholar
Lisuzzo, L., Cavallaro, G., Milioto, S. & Lazzara, G. (2020) Effects of halloysite content on the thermo-mechanical performances of composite bioplastics. Applied Clay Science, 185, 105416.Google Scholar
Liu, J., Wang, X., Bai, R., Zhang, N., Kan, J. & Jin, C. (2018) Synthesis, characterization, and antioxidant activity of caffeic-acid-grafted corn starch. Starch/Staerke, 70, 1700298.Google Scholar
Liu, M., Jia, Z., Jia, D. & Zhou, C. (2014) Recent advance in research on halloysite nanoparticles–polymer nanocomposite. Progress in Polymer Science, 39, 14981525.Google Scholar
Liu, S.T., Chen, X.G., Zhang, S.L., Liu, X.M. & Zhang, J.J. (2021) Preparation and characterization of halloysite-based carriers for quercetin loading and release. Clays and Clay Minerals, 69, 94104.Google Scholar
Ma, W., Wu, H., Higaki, Y. & Takahara, A. (2018) Halloysite nanoparticles: green nanomaterial for functional organic–inorganic nanohybrids. Chemical Record, 18, 986999.Google Scholar
Machowska, A., Klara, J., Ledwójcik, G., Wójcik, K., Dulińska-Litewka, J. & Karewicz, A. (2022) Clindamycin-loaded halloysite nanoparticles as the antibacterial component of composite hydrogel for bone repair. Polymers, 14, 2341.Google Scholar
Massaro, M., Licandro, E., Cauteruccio, S., Lazzara, G., Liotta, L.F., Notarbartolo, M. et al. (2022a) Nanocarrier based on halloysite and fluorescent probe for intracellular delivery of peptide nucleic acids. Journal of Colloid and Interface Science, 620, 221233.Google Scholar
Massaro, M., Noto, R. & Riela, S. (2022b) Halloysite nanoparticles: smart nanomaterials in catalysis. Catalysts, 12, 149.Google Scholar
Maurya, D.K. & Devasagayam, T.P.A. (2010) Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food and Chemical Toxicology, 48, 33693373.Google Scholar
Meng, Y., Wang, M., Tang, M., Hong, G., Gao, J. & Chen, Y. (2017) Preparation of robust superhydrophobic halloysite clay nanoparticles via mussel-inspired surface modification. Applied Sciences, 7, 1129.Google Scholar
Nazir, M.S., Mohamad Kassim, M.H., Mohapatra, L., Gilani, M.A., Raza, M.R. & Majeed, K. (2016) Characteristic properties of nanoclays and characterization of nanoparticulates and nanocomposites. Pp. 3555 in: Nanoclay Reinforced Polymer Composites (Jawaid, M. & Oualid, A.E.H., editors). Springer, Singapore.Google Scholar
Ouyang, J., Liu, T., Yang, H. & Zhang, Y. (2019) Multiple polarization loss and permittivity adjusting of halloysite/BN co-doped carbon/cobalt composites. Journal of Colloid and Interface Science, 555, 509518.Google Scholar
Pal, P., Kundu, M.K., Malas, A. & Das, C.K. (2015) Thermo mechanical properties of organically modified halloysite nanoparticles/cyclic olefin copolymer composite. Polymer Composites, 36, 955960.Google Scholar
Panda, A.K., Mishra, B.G., Mishra, D.K. & Singh, R.K. (2010) Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 363, 98104.Google Scholar
Pasbakhsh, P., Churchman, G.J. & Keeling, J.L. (2013) Characterisation of properties of various halloysites relevant to their use as nanoparticles and microfibre fillers. Applied Clay Science, 74, 4757.Google Scholar
Petková, M., Ryba, J., Hrabovská, V., Ujhelyiová, A. & Hricová, M. (2019) The crystallization of polypropylene/halloysite fibers. Journal of Thermal Analysis and Calorimetry, 136, 10931101.Google Scholar
Prinz Setter, O. (2020) Halloysite nanoparticles – the nano–bio interface. Nanoscale, 12, 2344423460.Google Scholar
Prinz Setter, O., Dahan, L., Abu Hamad, H. & Segal, E. (2022) Acid-etched halloysite nanoparticles as superior carriers for ciprofloxacin. Applied Clay Science, 228, 106627.Google Scholar
Prishchenko, D.A., Zenkov, E.V., Mazurenko, V.V., Fakhrullin, R.F., Lvov, Y.M. & Mazurenko, V.G. (2018) Molecular dynamics of the halloysite nanoparticles. Physical Chemistry Chemical Physics, 20, 58415849.Google Scholar
Qin, L., Dong, G., Nie, Y., Fakhrullin, R., Zhang, B. & Zhang, Y. (2024) Progress in design of halloysite nanoparticles–polymer nanocomposite membranes and their applications. Advanced Membranes, 4, 100091.Google Scholar
Rawtani, D. & Agrawal, Y.K. (2012) Multifarious applications of halloysite nanoparticles: a review. Reviews in Advanced Sciences and Engineering, 1, 282295.Google Scholar
Rawtani, D., Pandey, G., Tharmavaram, M., Pathak, P., Akkireddy, S. & Agrawal, Y.K. (2017) Development of a novel ‘nanocarrier’ system based on halloysite nanoparticles to overcome the complexation of ciprofloxacin with iron: an in vitro approach. Applied Clay Science, 150, 293302.Google Scholar
Rozhina, E., Panchal, A., Akhatova, F., Lvov, Y. & Fakhrullin, R. (2020) Cytocompatibility and cellular uptake of alkylsilane-modified hydrophobic halloysite nanoparticles. Applied Clay Science, 185, 105413.Google Scholar
Sabahi, H., Khorami, M., Rezayan, A.H., Jafari, Y. & Karami, M.H. (2018) Surface functionalization of halloysite nanoparticles via curcumin inclusion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 834840.Google Scholar
Sadjadi, S. (2020) Halloysite-based hybrids/composites in catalysis. Applied Clay Science, 189, 105537.Google Scholar
Sahnoune, M., Taguet, A., Otazaghine, B., Kaci, M. & Lopez-Cuesta, J.-M. (2017) Effects of functionalized halloysite on morphology and properties of polyamide 11/SEBS-g-MA blends. Polymer International, 66, 11601167.Google Scholar
Sánchez-Fernández, A., Peña-Parás, L., Vidaltamayo, R., Cué-Sampedro, R., Mendoza-Martínez, A., Zomosa-Signoret, V.C. et al. (2014) Synthesization, characterization, and in vitro evaluation of cytotoxicity of biomaterials based on halloysite nanoparticles. Materials, 7, 77707780.Google Scholar
Sangwichien, C. & Aranovich, G. (2002) Density functional theory predictions of adsorption isotherms with hysteresis loops. Physical Review E, 66, 313320.Google Scholar
Santos, A.C., Ferreira, C., Veiga, F., Ribeiro, A.J., Panchal, A., Lvov, Y. & Agarwal, A. (2018) Halloysite clay nanoparticles for life sciences applications: from drug encapsulation to bioscaffold. Advances in Colloid and Interface Science, 257, 5870.Google Scholar
Sargazi, S., Laraib, U., Barani, M., Rahdar, A., Fatima, I., Bilal, M. et al. (2022) Recent trends in mesoporous silica nanoparticles of rode-like morphology for cancer theranostics: a review. Journal of Molecular Structure, 1261, 132870.Google Scholar
Satish, S., Tharmavaram, M. & Rawtani, D. (2019) Halloysite nanoparticles as a nature’s boon for biomedical applications. BJGP Open, 6, 100071.Google Scholar
Senyel, M. & Dike, A.S. (2024) Contribution of silane modification of halloysite nanoparticle to its poly(butylene terephthalate)-based nanocomposites: structural, mechanical and thermal properties. Polymer Bulletin, 81, 98519870.Google Scholar
Sidorenko, A.Y., Kurban, Y.M., Aho, A., Ihnatovich, Z.V., Kuznetsova, T.F., Heinmaa, I. et al. (2021) Solvent-free synthesis of tetrahydropyran alcohols over acid-modified clays. Molecular Catalysis, 499, 111297.Google Scholar
Siranidi, E., Hillier, S. & Chryssikos, G.D. (2024) Structure of tubular halloysite-(10 Å) and its transition to halloysite-(7 Å) by infrared spectroscopy and X-ray diffraction. Clays and Clay Minerals, 72, e5.Google Scholar
Siy, B.S.C., Tan, J.A.X.C., Viron, K.P., Sajor, N.J.B., Santos, G.N.C. & Penaloza, D.P. (2020) Application of silane coupling agents to abaca fibers for hydrophobic modification. Cellulose Chemistry and Technology, 54, 365369.Google Scholar
Stor, M., Czelej, K., Krasiński, A. & Gradoń, L. (2023) Exceptional sorption of heavy metals from natural water by halloysite particles: a new prospect of highly efficient water remediation. Nanomaterials, 13, 1968.Google Scholar
Sun, P., Liu, G., Lv, D., Dong, X., Wu, J. & Wang, D. (2015) Effective activation of halloysite nanoparticles by piranha solution for amine modification via silane coupling chemistry. RSC Advances, 5, 5291652925.Google Scholar
Sun, Y., Yu, B., Liu, Y., Yan, J., Xu, Z., Cheng, B. et al. (2024) Bio-inspired surface manipulation of halloysite nanoparticles for high-performance flame retardant polylactic acid nanocomposites. Nano Research, 17, 15951606.Google Scholar
Tarasova, E., Naumenko, E., Rozhina, E., Akhatova, F. & Fakhrullin, R. (2019) Cytocompatibility and uptake of polycations-modified halloysite clay nanoparticles. Applied Clay Science, 169, 2130.Google Scholar
Taroni, T., Meroni, D., Fidecka, K., Maggioni, D., Longhi, M. & Ardizzone, S. (2019) Halloysite nanoparticles functionalization with phosphonic acids: role of surface charge on molecule localization and reversibility. Applied Surface Science, 486, 466473.Google Scholar
Tharmavaram, M., Pandey, G. & Rawtani, D. (2018) Surface modified halloysite nanoparticles: a flexible interface for biological, environmental and catalytic applications. Advances in Colloid and Interface Science, 261, 82101.Google Scholar
Wieczorek, M., Tatarchuk, T., Skórczewska, K., Szulc, J. & Tomaszewska, J. (2024) The effect of silanized halloysite nanoparticles on the structure of polyethylene-based composite. Materials, 17, 2651.Google Scholar
Wong, L.W., Pasbakhsh, P., Arabi, A.M., Keeling, J. & Tan, J.B.L. (2021) Halloysite nanoparticles from various geological deposits: new insights to acid etching and their impacts on products’ characteristics. Journal of Environmental Chemical Engineering, 9, 106127.Google Scholar
Yang, Y., Chen, Y., Leng, F., Huang, L., Wang, Z. & Tian, W. (2017) Recent advances on surface modification of halloysite nanoparticles for multifunctional applications. Applied Sciences, 7, 1215.Google Scholar
Yu, D., Wang, J., Hu, W. & Guo, R. (2017) Preparation and controlled release behavior of halloysite/2-mercaptobenzothiazole nanocomposite with calcined halloysite as nanocontainer. Materials and Design, 129, 103110.Google Scholar
Yu, H., Xu, H., Hao, T., Yuan, Y., Zhang, B., Wang, H. et al. (2024) Facile synthesis of ZnO/halloysite nanoparticle composite with greatly enhanced photocatalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 688, 133575.Google Scholar
Yuan, P., Southon, P.D., Liu, Z., Green, M.E.R., Hook, J.M., Antill, S.J. & Kepert, C.J. (2008) Functionalization of halloysite clay nanoparticles by grafting with γ-aminopropyltriethoxysilane. Journal of Physical Chemistry C, 112, 1574215751.Google Scholar
Yuan, P., Tan, D. & Annabi-Bergaya, F. (2015) Properties and applications of halloysite nanoparticles: recent research advances and future prospects. Applied Clay Science, 112113, 7593.Google Scholar
Zahidah, K.A., Raja, B., Kakooei, S., Kermanioryani, M., Mohebbi, H., Ismail, M.C. & Bothi Raja, P. (2017) Benzimidazole-loaded halloysite nanoparticle as a smart coating application. Progress in Organic Coatings, 111, 243254.Google Scholar
Zhang, A.B., Pan, L., Zhang, H.Y., Liu, S.T., Ye, Y., Xia, M.S. & Chen, X.G. (2012) Effects of acid treatment on the physico-chemical and pore characteristics of halloysite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 396, 182188.Google Scholar
Zhang, H. (2017) Selective modification of inner surface of halloysite nanoparticles: a review. Nanotechnology Reviews, 6, 573581.Google Scholar
Zhang, J., Huang, Z., Yang, M., Dong, S., Zhou, F., Yan, C. et al. (2025) Halloysite nanoparticles potentiate protein assembly for facile fabrication of nanocomposite thin film and its application in wound dressing. Applied Clay Science, 272, 107260.Google Scholar
Zhang, Y., Meng, R., Zhou, J., Liu, X. & Guo, W. (2022) Halloysite nanoparticles-decorated electrospun biobased polyamide scaffolds for tissue engineering applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, 129385.Google Scholar
Zhang, Y., Tang, A., Yang, H. & Ouyang, J. (2016) Applications and interfaces of halloysite nanocomposites. Applied Clay Science, 114, 530548.Google Scholar
Zhao, X., Zhou, C. & Liu, M. (2020) Self-assembled structures of halloysite nanoparticles: towards the development of high-performance biomedical materials. Journal of Materials Chemistry B, 8, 838851.Google Scholar