Hostname: page-component-54dcc4c588-scsgl Total loading time: 0 Render date: 2025-10-03T13:16:07.683Z Has data issue: false hasContentIssue false

Survival, clinical, and genetic findings in paediatric cardiomyopathy: a five-year prospective study from Brazil

Published online by Cambridge University Press:  25 September 2025

Ana Flávia M. Torbey*
Affiliation:
Fluminense Federal University, Niterói, Rio de Janeiro, Brazil Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
Raquel G.T. Couto
Affiliation:
Antônio Pedro University Hospital, Fluminense Federal University, EBSERH, Niterói, Rio de Janeiro, Brazil
Aurea Lucia A.A.G. de Souza
Affiliation:
Fluminense Federal University, Niterói, Rio de Janeiro, Brazil Antônio Pedro University Hospital, Fluminense Federal University, EBSERH, Niterói, Rio de Janeiro, Brazil
Eduarda C. Maia
Affiliation:
Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
Gabriella L.P. da Silva
Affiliation:
Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
Virginia L. Ferreira
Affiliation:
Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
Adriana B. Carvalho
Affiliation:
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil National Institute of Cardiology, Rio de Janeiro, Brazil
Flávia Gurgel
Affiliation:
Getúlio Vargas Filho Municipal Hospital, Niterói, Rio de Janeiro, Brazil
Anna Esther A. e Silva
Affiliation:
Antônio Pedro University Hospital, Fluminense Federal University, EBSERH, Niterói, Rio de Janeiro, Brazil Getúlio Vargas Filho Municipal Hospital, Niterói, Rio de Janeiro, Brazil
Evandro T. Mesquita
Affiliation:
Fluminense Federal University, Niterói, Rio de Janeiro, Brazil Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
*
Corresponding author: Ana Flávia M. Torbey; Email: anatorbey@id.uff.br

Abstract

Background:

Although global knowledge on paediatric cardiomyopathies has advanced, prospective cohort studies from Brazil, particularly those integrating clinical and genetic data, remain limited.

Objective:

To describe the clinical and genetic characteristics of paediatric cardiomyopathy patients and identify mortality predictors in a metropolitan region of Brazil.

Methods:

Prospective observational study of paediatric patients with cardiomyopathies. Clinical data, genetic findings, and survival were analysed using Kaplan–Meier curves.

Results:

A total of 45 cases, male predominance (55.6%), and mean age at diagnosis of 6.5 years. Dilated and hypertrophic cardiomyopathy were the most common (33.3%). The main reason for diagnosis was the investigation of cardiovascular symptoms (60.9%). Genetic investigation occurred in 66.6%, a positivity rate of 60%. Multi-organ/system involvement was significantly associated with a positive genetic result (77.7%, p = 0.017). Mortality was 11.1%; survival was significantly lower in the following conditions: ejection fraction < 30% (p < 0.0001), functional class III/IV (p < 0.0001), heart failure (p = 0.0091), use of three or more cardiovascular medications (p < 0.001), N-Terminal Pro-B-Type natriuretic peptide >1000pg/mL (p = 0.004), and heart transplant indication (p < 0.001).

Conclusion:

These findings provide novel data in Brazil, highlight a high rate of positive genetic test, particularly among patients with systemic involvement and identify key clinical predictors of mortality to guide risk stratification and care.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Lipshultz, SE, Sleeper, LA, Towbin, JA, et al. The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med 2003; 348: 16471655.10.1056/NEJMoa021715CrossRefGoogle ScholarPubMed
Arola, A, Jokinen, E, Ruuskanen, O, et al. Epidemiology of idiopathic cardiomyopathies in children and adolescents. A nationwide study in Finland. Am J Epidemiol 1997; 146: 385393.10.1093/oxfordjournals.aje.a009291CrossRefGoogle ScholarPubMed
Nugent, AW, Daubeney, PE, Chondros, P, et al. The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med 2003; 348: 16391646.10.1056/NEJMoa021737CrossRefGoogle ScholarPubMed
Lipshultz, SE, Law, YM, Asante-Korang, A, et al. Cardiomyopathy in children: classification and diagnosis: a scientific statement from the American heart association. Circulation 2019; 140: e9e68.10.1161/CIR.0000000000000682CrossRefGoogle ScholarPubMed
Ware, SM, Bhatnagar, S, Dexheimer, PJ, et al. The genetic architecture of pediatric cardiomyopathy. Am J Hum Genet 2022; 109: 282298.10.1016/j.ajhg.2021.12.006CrossRefGoogle ScholarPubMed
Ware, SM, Wilkinson, JD, Tariq, M, et al. Genetic causes of cardiomyopathy in children: first results from the pediatric cardiomyopathy genes study, J Am Heart Assoc 2021; 10: e020840.CrossRefGoogle ScholarPubMed
Bogle, C, Colan, SD, Miyamoto, SD, et al. Treatment strategies for cardiomyopathy in children: a scientific statement from the American heart association Circulation 2023, 148:e3.10.1161/CIR.0000000000001151CrossRefGoogle ScholarPubMed
Lee, TM, Ware, SM, Kamsheh, AM, et al. Genomics of pediatric cardiomyopathy. Pediatr Res 2025; 97: 13811392.10.1038/s41390-025-03819-2CrossRefGoogle ScholarPubMed
Rath, A, Weintraub, R. Overview of cardiomyopathies in childhood. Front Pediatr 2021; 9: 708732.10.3389/fped.2021.708732CrossRefGoogle ScholarPubMed
Instituto Brasileiro de Geografia e Estatística, https://www.ibge.gov.br/cidades-e-estados/rj. Accessed 29 August 2024.Google Scholar
Elliott, P, Andersson, B, Arbustini, E, et al. Classification of the cardiomyopathies: a position statement from the European society of cardiology working group on myocardial and pericardial diseases. Eur Heart J 2008; 29: 270276.10.1093/eurheartj/ehm342CrossRefGoogle Scholar
Maron, BJ, Towbin, JA, Thiene, , et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 2006; 113: 18071816.10.1161/CIRCULATIONAHA.106.174287CrossRefGoogle ScholarPubMed
Rohde, S, Muslem, R, Kaya, E, et al. State-of-the art review: noncompaction cardiomyopathy in pediatric patients. Heart Fail Rev 2022; 27: 1528.CrossRefGoogle ScholarPubMed
Petersen, SE, Jensen, B, Aung, N, et al. Excessive trabeculation of the left ventricle: JACC: cardiovascular imaging expert panel paper. JACC. Cardiovascular imaging 2023; 16: 408425.10.1016/j.jcmg.2022.12.026CrossRefGoogle ScholarPubMed
Towbin, JA, McKenna, WJ, Abrams, et al. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart rhythm 2019; 16: e301e372.10.1016/j.hrthm.2019.05.007CrossRefGoogle ScholarPubMed
Torbey, AFM, Couto, RGT, Grippa, A, et al. Cardiomyopathy in children and adolescents in the era of precision medicine. Arq Bras Cardiol 2024; 121: e20230154.Google ScholarPubMed
Arbustini, E, Narula, N, Dec, GW, et al. The MOGE(S) classification for a phenotype-genotype nomenclature of cardiomyopathy: endorsed by the world heart federation. Journal of the American College of Cardiology. Elsevier USA 2013; 62: 20462072.10.1016/j.jacc.2013.08.1644CrossRefGoogle ScholarPubMed
Kasai-Brunswick, TH, Campos, DBP de, Braga, A, et al. National network of cardiovascular genomics: implementing genetic diagnosis in cardiology in the Brazilian unified health system. ABC Heart Fail Cardiomyop 2023; 3: e20230011.10.36660/abchf.20230011CrossRefGoogle Scholar
Huertas-Quiñones, VM, Mestra, CF, Peña-Trujillo, V, Gallo-Bernal, S, Villaveces, M, Alarcón-Forero, LC. Paediatric cardiomyopathies: echocardiographic diagnosis, clinical profile, and demographic characteristics: the experience of a tertiary referral centre for Latin American paediatric cardiology. Cardiol Young 2020; 30: 462467.10.1017/S1047951120000281CrossRefGoogle ScholarPubMed
Zenteno, PÁ., Peñafiel, LM, Del Río, PA. Non-compaction and restrictive cardiomyopathy in pediatrics: two types of myocardial diseases that are important to recognize. Andes Pediatrica 2021; 92: 667676.Google Scholar
Jefferies, JL, Wilkinson, JD, Sleeper, LA, et al. Cardiomyopathy phenotypes and outcomes for children with left ventricular myocardial noncompaction: results from the pediatric cardiomyopathy registry. J Card Fail 2015; 21: 877884.10.1016/j.cardfail.2015.06.381CrossRefGoogle ScholarPubMed
Shi, WY, Betancur, MM, Nugent, AW, et al. Long-term outcomes of childhood left ventricular noncompaction cardiomyopathy results from a national population-based study. Circulation 2018; 138: 367376.10.1161/CIRCULATIONAHA.117.032262CrossRefGoogle ScholarPubMed
Sun, Q, Guo, J, Zhang, Y, et al. Cardiomyopathy in children: a single-centre, retrospective study of genetic and clinical characteristics. BMJ Paediatr Open 2024; 8: e002024.CrossRefGoogle ScholarPubMed
Kaski, JP, Norrish, G, Gimeno Blanes, JR, et al. Cardiomyopathies in children and adolescents: aetiology, management, and outcomes in the European society of cardiology EURObservational research programme cardiomyopathy and myocarditis registry. Eur Heart J 2024; 45: 14431454.10.1093/eurheartj/ehae109CrossRefGoogle Scholar
De Angelis, G, Bobbo, M, Paldino, A, et al. Cardiomyopathies in children: classification, diagnosis and treatment. Curr Opin Organ Transplant 2020; 25: 218230.CrossRefGoogle ScholarPubMed
Lee, TM, Hsu, DT, Kantor, P, et al. Pediatric cardiomyopathies. Circ Res 2017; 121: 855873.10.1161/CIRCRESAHA.116.309386CrossRefGoogle ScholarPubMed
Schauer, JS, Hong, B. A review of pediatric cardiomyopathy. Semin Cardiothorac Vasc Anesth 2024; 28: 165176.CrossRefGoogle ScholarPubMed
Bagkaki, A, Parthenakis, F, Chlouverakis, G, et al. Epidemiology of pediatric cardiomyopathy in a Mediterranean population. Children (Basel) 2024; 11: 732.Google Scholar
Arbelo, E, Protonotarios, A, Gimeno, JR, et al. ESC guidelines for the management of cardiomyopathies: developed by the task force on the management of cardiomyopathies of the European society of cardiology (ESC). Eur Heart J 2023; 44: 35033626.10.1093/eurheartj/ehad194CrossRefGoogle Scholar
Colan, SD, Lipshultz, SE, Lowe, AM, et al. Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the pediatric cardiomyopathy registry. Circulation 2007; 115: 773781.10.1161/CIRCULATIONAHA.106.621185CrossRefGoogle ScholarPubMed
Monda, E, Rubino, M, Lioncino, M, et al. Hypertrophic cardiomyopathy in children: pathophysiology, diagnosis, and treatment of non-sarcomeric causes. Front Pediatr 2021; 9: 632293.10.3389/fped.2021.632293CrossRefGoogle ScholarPubMed
Gal, DB, Morales, A, Rojahn, S, et al. Comprehensive genetic testing for pediatric hypertrophic cardiomyopathy reveals clinical management opportunities and syndromic conditions. Pediatr Cardiol 2022; 43: 616623.CrossRefGoogle ScholarPubMed
Rapezzi, C, Arbustini, E, Caforio, AL, et al. Diagnostic work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC working group on myocardial and pericardial diseases. Eur Heart J 2013; 34: 14481458.10.1093/eurheartj/ehs397CrossRefGoogle Scholar
Kindel, SJ, Miller, EM, Gupta, R, et al. Pediatric cardiomyopathy: importance of genetic and metabolic evaluation. J Card Fail 2012; 18: 396403.10.1016/j.cardfail.2012.01.017CrossRefGoogle ScholarPubMed
Tsatsopoulou, A, Protonotarios, I, Xylouri, Z, et al. Cardiomyopathies in children: An overview. Hellenic Journal of Cardiology. Hellenic Cardiological Society 2023; 72: 4356.10.1016/j.hjc.2023.02.007CrossRefGoogle ScholarPubMed
Hazebroek, MR, Moors, S, Dennert, R, et al. Prognostic relevance of gene-environment interactions in patients with dilated cardiomyopathy applying the MOGE(S) classification. J Am Coll Cardiol 2015; 66: 13131323.CrossRefGoogle ScholarPubMed
Shafqat, A, Shaik, A, Koritala, S, et al. Contemporary review on pediatric hypertrophic cardiomyopathy: insights into detection and management. Front Cardiovasc Med 2024; 10: 1277041.10.3389/fcvm.2023.1277041CrossRefGoogle ScholarPubMed
Spaapen, TOM, Bohte, AE, Slieker, MG, Grotenhuis, HB. Cardiac MRI in diagnosis, prognosis, and follow-up of hypertrophic cardiomyopathy in children: current perspectives. Br J Radiol 2024; 97: 875881.CrossRefGoogle ScholarPubMed
Jurko, T, Jurko, A, Polakova, JM, et al. Risk of delayed diagnosis in young patients with left ventricular non-compaction-a potential benefit of magnetic resonance imaging. Neuroendocrinol Lett [Internet] 2019; 40: 6874.Google Scholar
Mejia, EJ, O’Connor, MJ. The role of imaging in assessing disease severity and prognosis in cardiomyopathy. Prog Pediatr Cardiol 2020; 59: 101316.10.1016/j.ppedcard.2020.101316CrossRefGoogle Scholar
Kozak, MF, Afiune, JY, Grosse-Wortmann, L. Current use of pediatric cardiac magnetic resonance imaging in Brazil. Arq Bras Cardiol 2021; 116: 305312.10.36660/abc.20190860CrossRefGoogle ScholarPubMed
Alvarez, JA, Wilkinson, JD, Lipshultz, SE. Outcome predictors for pediatric dilated cardiomyopathy: a systematic review. Prog Pediatr Cardiol 2007; 23: 2532.10.1016/j.ppedcard.2007.05.009CrossRefGoogle ScholarPubMed
Azevedo, VM, Albanesi Filho, FM, Santos, MA, Castier, MB, Tura, BR. How can the echocardiogram be useful for predicting death in children with idiopathic dilated cardiomyopathy? Arq Bras Cardiol 2004; 82: 505514.10.1590/S0066-782X2004000600003CrossRefGoogle ScholarPubMed
Daubeney, PEF, Nugent, AW, Chondros, P, et al. Clinical features and outcomes of childhood dilated cardiomyopathy: results from a national population-based study. Circulation 2006; 114: 26712678.10.1161/CIRCULATIONAHA.106.635128CrossRefGoogle ScholarPubMed
Towbin, JA, Lowe, AM, Colan, SD, et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 2006; 296: 18671876.10.1001/jama.296.15.1867CrossRefGoogle ScholarPubMed
Agrawal, A, Janjua, D, Alsayed Ali Zeyada, AA, Taher Elsheikh, A. Heart failure in children and adolescents: an update on diagnostic approaches and management. Clin Exp Pediatr 2024; 67: 178190.10.3345/cep.2023.00528CrossRefGoogle ScholarPubMed
Lin, CW, Zeng, XL, Jiang, SH, et al. Role of the NT-proBNP level in the diagnosis of pediatric heart failure and investigation of novel combined diagnostic criteria. Exp Ther Med 2013; 6: 995999.10.3892/etm.2013.1250CrossRefGoogle ScholarPubMed
Mangat, J, Carter, C, Riley, G, Foo, Y, Burch, M. The clinical utility of brain natriuretic peptide in paediatric left ventricular failure. Eur J Heart Fail 2009; 11: 4852.10.1093/eurjhf/hfn001CrossRefGoogle ScholarPubMed
Cantarutti, N, Adorisio, R, Di Marzio, S, et al. The role of nt-pro-bnp in predicting outcome in pediatric hypertrophic cardiomyopathy. Pediatr Cardiol 2024. doi: 10.1007/s00246-024-03702-7.CrossRefGoogle ScholarPubMed
Keisling, J, Bedoukian, E, Burstein, DS, et al. Diagnostic yield of exome sequencing in pediatric cardiomyopathy. J Pediatr 2024; 265: 113808.10.1016/j.jpeds.2023.113808CrossRefGoogle ScholarPubMed
Nugent, AW, Daubeney, PEF, Chondros, P, et al. Clinical features and outcomes of childhood hypertrophic cardiomyopathy: results from a national population-based study. Circulation 2005; 112: 13321338.10.1161/CIRCULATIONAHA.104.530303CrossRefGoogle ScholarPubMed
van Waning, JI, Moesker, J, Heijsman, D, Boersma, E, Majoor-Krakauer, D. Systematic review of genotype-phenotype correlations in noncompaction cardiomyopathy. J Am Heart Assoc 2019; 8: e012993.10.1161/JAHA.119.012993CrossRefGoogle ScholarPubMed
Ciuca, C, Ragni, L, Hasan, T, et al. Dilated cardiomyopathy in a pediatric population: etiology and outcome predictors - a single-center experience. Future Cardiol 2019; 15: 95107.10.2217/fca-2018-0030CrossRefGoogle Scholar
Alexander, PMA, Daubeney, PEF, Nugent, AW, et al. Long-term outcomes of dilated cardiomyopathy diagnosed during childhood: results from a national population-based study of childhood cardiomyopathy. Circulation 2013; 128: 20392046.10.1161/CIRCULATIONAHA.113.002767CrossRefGoogle ScholarPubMed
Tsirka, AE, Trinkaus, K, Chen, SC, et al. Improved outcomes of pediatric dilated cardiomyopathy with utilization of heart transplantation. J Am Coll Cardiol 2004; 44: 391397.10.1016/j.jacc.2004.04.035CrossRefGoogle ScholarPubMed
Fenton, MJ, Horne, P, Simmonds, J, Neligan, SL, Andrews, RE, Burch, M. Potential for and timing of recovery in children with dilated cardiomyopathy. Int J Cardiol 2018; 266: 162166.10.1016/j.ijcard.2017.12.075CrossRefGoogle ScholarPubMed