Hostname: page-component-54dcc4c588-gwv8j Total loading time: 0 Render date: 2025-10-08T02:17:48.683Z Has data issue: false hasContentIssue false

Progress in the treatment of pulmonary valve regurgitation after repaired Tetralogy of Fallot

Published online by Cambridge University Press:  23 September 2025

Zhangwei Wang
Affiliation:
Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Xicheng District, Beijing, China
Honghao Fu
Affiliation:
Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Xicheng District, Beijing, China
Shoujun Li*
Affiliation:
Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Xicheng District, Beijing, China
*
Corresponding author: Shoujun Li; Email: beijing348@qq.com

Abstract

In recent years, late pulmonary valve regurgitation after repair of Tetralogy of Fallot has gradually attracted the attention of scholars at home and abroad. Early pulmonary valve regurgitation may be asymptomatic and even survive for a long time without symptoms. However, long-term pulmonary valve regurgitation and chronic right ventricular volume overload may lead to decreased exercise tolerance, decreased right ventricular ejection fraction, arrhythmia, and sudden death. How to provide standardised, scientific, and individualised treatment strategies and life-cycle health services for repaired Tetralogy of Fallot patients with long-term pulmonary valve regurgitation has become a challenge for CHD surgeons around the world. This review summarises the pathophysiological mechanism of pulmonary valve regurgitation after repaired Tetralogy of Fallot, the preoperative diagnosis and evaluation of the severity of pulmonary valve regurgitation, the prevention of initial repair of Tetralogy of Fallot before pulmonary valve regurgitation, the determination of the intervention time of severe pulmonary valve regurgitation, the selection of the optimal intervention strategy, and the prospect of the future general clinical application of tissue engineering valved conduits, which are helpful to improve the long-term prognosis and quality of life of patients with repaired Tetralogy of Fallot.

Information

Type
Review
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Zhangwei Wang and Honghao Fu contributed equally to this work.

References

Schulte, LJ, Miller, PC, Bhat, AN, et al. Evolution of pulmonary valve management during repair of tetralogy of fallot: a 14-year experience. Ann Thorac Surg 2023; 115: 462469.10.1016/j.athoracsur.2022.05.063CrossRefGoogle ScholarPubMed
Huishan, Wang, Shoujun, Li. Chinese expert consensus on surgical treatment of congenital heart disease (10): tetralogy of fallot. Chinese J Thorac Cardiovasc Surg 2020; 27: 12471254.Google Scholar
LILLEHEI, CW, COHEN, M, WARDEN, HE, et al. Direct vision intracardiac surgical correction of the tetralogy of fallot, pentalogy of fallot, and pulmonary atresia defects; report of first ten cases. Ann Surg 1955; 142: 418442.10.1097/00000658-195509000-00010CrossRefGoogle ScholarPubMed
Cuypers, JA, Menting, ME, Konings, EE, et al. Unnatural history of tetralogy of fallot: prospective follow-up of 40 years after surgical correction. Circulation 2014; 130: 19441953.10.1161/CIRCULATIONAHA.114.009454CrossRefGoogle ScholarPubMed
Menachem, JN, Opotowsky, AR. Pulmonary valve replacement in repaired tetralogy of fallot: appropriate timing saves lives. J Am Coll Cardiol 2023; 81: 20862088.10.1016/j.jacc.2023.04.005CrossRefGoogle ScholarPubMed
Bokma, JP, Geva, T, Sleeper, LA, et al. Improved outcomes after pulmonary valve replacement in repaired tetralogy of fallot. J Am Coll Cardiol 2023; 81: 20752085.10.1016/j.jacc.2023.02.052CrossRefGoogle ScholarPubMed
Wei, X, Li, T, Ling, Y, et al. Transannular patch repair of tetralogy of fallot with or without monocusp valve reconstruction: a meta-analysis. BMC Surg 2022; 22: 18.10.1186/s12893-022-01474-6CrossRefGoogle ScholarPubMed
D’Udekem, Y, Ovaert, C, Grandjean, F, et al. Tetralogy of fallot: transannular and right ventricular patching equally affect late functional status. Circulation 2000; 102: III116III122.10.1161/circ.102.suppl_3.III-116CrossRefGoogle ScholarPubMed
Ylitalo, P, Lehmonen, L, Lauerma, K, Holmstrom, M, Pitkanen-Argillander, O, Jokinen, E. Severe pulmonary regurgitation in adolescents with tetralogy of Fallot leads to increased longitudinal strain. Magn Reson Mater Phy 2020: 33: 309316.10.1007/s10334-019-00780-0CrossRefGoogle ScholarPubMed
Hoashi, T, Kagisaki, K, Meng, Y, et al. Long-term outcomes after definitive repair for tetralogy of fallot with preservation of the pulmonary valve annulus. J Thorac Cardiov Sur 2014; 148: 802808. 808–809.10.1016/j.jtcvs.2014.06.008CrossRefGoogle ScholarPubMed
Siyuan, Liu, Zihao, Gui, Xiangming, Fan, Xucong, Shi. Research progress on diagnosis and surgical treatment of long-term pulmonary valve regurgitation after tetralogy of fallot repair. J Clin Ped Sur 2024; 23 : 789795.Google Scholar
Frigiola, A, Redington, AN, Cullen, S, Vogel, M. Pulmonary regurgitation is an important determinant of right ventricular contractile dysfunction in patients with surgically repaired tetralogy of fallot. Circulation 2004; 110: II153II157.10.1161/01.CIR.0000138397.60956.c2CrossRefGoogle Scholar
Li, VW, Yu, CK, So, EK, Wong, WH, Cheung, YF. Ventricular myocardial deformation imaging of patients with repaired tetralogy of fallot. J Am Soc Echocardiog 2020; 33: 788801.10.1016/j.echo.2020.03.017CrossRefGoogle ScholarPubMed
Gatzoulis, MA, Balaji, S, Webber, SA, et al. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of fallot: a multicentre study. Lancet 2000; 356: 975981.10.1016/S0140-6736(00)02714-8CrossRefGoogle ScholarPubMed
Harrison, DA, Harris, L, Siu, SC, et al. Sustained ventricular tachycardia in adult patients late after repair of tetralogy of fallot. J Am Coll Cardiol 1997; 30: 13681373.10.1016/S0735-1097(97)00316-1CrossRefGoogle ScholarPubMed
Bouzas, B, Kilner, PJ, Gatzoulis, MA. Pulmonary regurgitation: not a benign lesion. Eur Heart J 2005; 26: 433439.10.1093/eurheartj/ehi091CrossRefGoogle Scholar
Dennis, M, Moore, B, Kotchetkova, I, Pressley, L, Cordina, R, Celermajer, DS. Adults with repaired tetralogy: low mortality but high morbidity up to middle age. Open Heart 2017; 4: e564.10.1136/openhrt-2016-000564CrossRefGoogle ScholarPubMed
Bansal, N, Gupta, P, Joshi, A, Zerin, JM, Aggarwal, S. Utility of doppler echocardiography to estimate the severity of pulmonary valve regurgitation fraction in patients with repaired tetralogy of fallot. Pediatr Cardiol 2019; 40: 404411.10.1007/s00246-018-2045-yCrossRefGoogle ScholarPubMed
Stout, KK, Daniels, CJ, Aboulhosn, JA, et al. 2018 AHA/ACC guideline for the management of adults with congenital heart disease: a report of the American college of cardiology/American heart association task force on clinical practice guidelines. Circulation 2018; 139: e698e800.Google Scholar
Koestenberger, M, Nagel, B, Halb, V, Gamillscheg, A. Correlation of pulmonary regurgitation fraction and right ventricular ejection fraction in patients with tetralogy of Fallot. Clin Res Cardiol 2011: 100: 713714.10.1007/s00392-011-0309-0CrossRefGoogle ScholarPubMed
Holmes, KW. Timing of pulmonary valve replacement in tetralogy of fallot using cardiac magnetic resonance imaging: an evolving process. J Am Coll Cardiol 2012; 60: 10151017.10.1016/j.jacc.2012.05.026CrossRefGoogle ScholarPubMed
Yamamura, K, Yuen, D, Hickey, EJ, et al. Right ventricular fibrosis is associated with cardiac remodelling after pulmonary valve replacement. Heart 2019; 105: 855863.10.1136/heartjnl-2018-313961CrossRefGoogle ScholarPubMed
Mercer-Rosa, L, Yang, W, Kutty, S, Rychik, J, Fogel, M, Goldmuntz, E. Quantifying pulmonary regurgitation and right ventricular function in surgically repaired tetralogy of fallot: a comparative analysis of echocardiography and magnetic resonance imaging. Circ-Cardiovasc Imag 2012; 5: 637643.10.1161/CIRCIMAGING.112.972588CrossRefGoogle ScholarPubMed
Lapierre, C, Dubois, J, Rypens, F, Raboisson, MJ, Dery, J. Tetralogy of fallot: preoperative assessment with MR and CT imaging. Diagn Interv Imag 2016; 97: 531541.10.1016/j.diii.2016.01.009CrossRefGoogle ScholarPubMed
Park, CS, Lee, JR, Lim, HG, Kim, WH, Kim, YJ. The long-term result of total repair for tetralogy of fallot. Eur J Cardio-thorac 2010; 38: 311317.10.1016/j.ejcts.2010.02.030CrossRefGoogle ScholarPubMed
Wang, Z, Li, Z, Ding, N, Zhu, Y, Li, X, Yi, H. When do patients with tetralogy of fallot need a transannular patch. J Cardiac Surg 2022; 37: 50415051.10.1111/jocs.17191CrossRefGoogle Scholar
Tan, C, Soquet, J, Brizard, CP, D’Udekem, Y. Evolution of residual and recurrent right ventricular outflow tract obstruction after tetralogy of fallot repair. J Thorac Cardiov Sur 2020; 159: e275e277.10.1016/j.jtcvs.2019.09.190CrossRefGoogle ScholarPubMed
Yamamura, K, Sakamoto, I, Morihana, E, et al. Elevated non-invasive liver fibrosis markers and risk of liver carcinoma in adult patients after repair of tetralogy of fallot. Int J Cardiol 2019; 287: 121126.10.1016/j.ijcard.2019.04.032CrossRefGoogle ScholarPubMed
Kim, YS, Song, J, Huh, J, Kang, IS, Yang, JH, Jun, TG. The progression of an acceptable pulmonary stenosis immediately after total correction of tetralogy of fallot. Cardiol Young 2020; 30: 774778.10.1017/S1047951120000955CrossRefGoogle ScholarPubMed
Cesnjevar, R, Harig, F, Raber, A, et al. Late pulmonary valve replacement after correction of fallot’s tetralogy. Thorac Cardiov Surg 2004; 52: 2328.Google ScholarPubMed
Baumgartner, H, De Backer, J, Babu-Narayan, SV, et al. 2020 ESC guidelines for the management of adult congenital heart disease. Eur Heart J 2021; 42: 563645.10.1093/eurheartj/ehaa554CrossRefGoogle ScholarPubMed
Marelli, A, Beauchesne, L, Colman, J, et al. Canadian cardiovascular Society 2022 guidelines for cardiovascular interventions in adults with congenital heart disease. Can J Cardiol 2022; 38: 862896.Google Scholar
Adamson, GT, McElhinney, DB, Lui, G, et al. Secondary repair of incompetent pulmonary valves after previous surgery or intervention: patient selection and outcomes. J Thorac Cardiovasc Surg 2020; 159: 23832392.10.1016/j.jtcvs.2019.06.110CrossRefGoogle ScholarPubMed
Cleveland, JD, Wells, WJ. The Surgical Approach to Pulmonary Valve Replacement. Semin Thorac Cardiov 2022: 34: 12561261.10.1053/j.semtcvs.2022.05.006CrossRefGoogle ScholarPubMed
Haas, F, Schreiber, C, Horer, J, Kostolny, M, Holper, K, Lange, R. Is there a role for mechanical valved conduits in the pulmonary position? Ann Thorac Surg 2005; 79: 16621667. 1667–1668.10.1016/j.athoracsur.2004.10.054CrossRefGoogle Scholar
Kim, DH, Choi, ES, Kwon, BS, et al. Pulmonary valve replacement following repair of tetralogy of fallot: comparison of outcomes between bio- and mechanical prostheses. Eur J Cardio-Thorac 2021; 60: 947954.10.1093/ejcts/ezab099CrossRefGoogle ScholarPubMed
Kwon, MH, Baird, CW. Surgical Valve Choices for Pulmonary Valve Replacement. Semin Thorac Cardiov 2023: 35: 94104.10.1053/j.semtcvs.2022.01.006CrossRefGoogle ScholarPubMed
Nomoto, R, Sleeper, LA, Borisuk, MJ, et al. Outcome and performance of bioprosthetic pulmonary valve replacement in patients with congenital heart disease. J Thorac Cardiovasc Surg 2016; 152: 13331342.10.1016/j.jtcvs.2016.06.064CrossRefGoogle ScholarPubMed
McKenzie, ED, Khan, MS, Dietzman, TW, et al. Surgical pulmonary valve replacement: a benchmark for outcomes comparisons. J Thorac Cardiovasc Surg 2014; 148: 14501453.10.1016/j.jtcvs.2014.02.060CrossRefGoogle ScholarPubMed
Wang, Z, Ma, K, Li, S. Application of right ventricular to pulmonary valved conduit in the surgical treatment of congenital heart disease. Cardiol Young 2024; 34: 14031410.10.1017/S104795112402537XCrossRefGoogle ScholarPubMed
Li, XX, Wang, ZY, Jin, M. Research progress of common complications of tetralogy of fallot in the middle and long term after repair. J Cardiovasc Pulm Dis 2023; 42: 869874.Google Scholar
Dittrich, S, Alexi-Meskishvili, VV, Yankah, AC, et al. Comparison of porcine xenografts and homografts for pulmonary valve replacement in children. Ann Thorac Surg 2000; 70: 717722.10.1016/S0003-4975(00)01532-0CrossRefGoogle ScholarPubMed
Allen, BS, El-Zein, C, Cuneo, B, Cava, JP, Barth, MJ, Ilbawi, MN. Pericardial tissue valves and Gore-tex conduits as an alternative for right ventricular outflow tract replacement in children. Ann Thorac Surg 2002; 74: 771777.10.1016/S0003-4975(02)03767-0CrossRefGoogle Scholar
Nakatsuji, H, Yamagishi, M, Maeda, Y, et al. Midterm results of pulmonary artery plasty with in vivo tissue-engineered vascular grafts. Interact Cardiovasc Thorac Surg 2021; 32: 956959.10.1093/icvts/ivab019CrossRefGoogle ScholarPubMed
Dong, Zhao, Keming, Yang, Shoujun, Li. Evaluation of mid-term outcomes of pulmonary valve replacement surgery after repair of tetralogy of fallot. Chinese J Clin Thorac Cardiovasc Surg 2021; 28: 404408.Google Scholar
Ribeiro, JM, Teixeira, R, Lopes, J, Costa, M, Pires, A, Goncalves, L. Transcatheter versus surgical pulmonary valve replacement: a systemic review and meta-analysis. Ann Thorac Surg 2020; 110: 17511761.10.1016/j.athoracsur.2020.03.007CrossRefGoogle ScholarPubMed
Bonhoeffer, P, Boudjemline, Y, Saliba, Z, et al. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 2000; 356: 14031405.10.1016/S0140-6736(00)02844-0CrossRefGoogle Scholar
Georgiev, S, Ewert, P, Tanase, D, et al. A low residual pressure gradient yields excellent long-term outcome after percutaneous pulmonary valve implantation. JACC-Cardiovasc Inte 2019; 12: 15941603.10.1016/j.jcin.2019.03.037CrossRefGoogle ScholarPubMed
Cheatham, JP, Hellenbrand, WE, Zahn, EM, et al. Clinical and hemodynamic outcomes up to 7 years after transcatheter pulmonary valve replacement in the US melody valve investigational device exemption trial. Circulation 2015; 131: 19601970.10.1161/CIRCULATIONAHA.114.013588CrossRefGoogle ScholarPubMed
Nordmeyer, J, Lurz, P, Khambadkone, S, et al. Pre-stenting with a bare metal stent before percutaneous pulmonary valve implantation: acute and 1-year outcomes. Heart 2011; 97: 118123.10.1136/hrt.2010.198382CrossRefGoogle ScholarPubMed
Virk, SA, Liou, K, Chandrakumar, D, Gupta, S, Cao, C. Percutaneous pulmonary valve implantation: a systematic review of clinical outcomes. Int J Cardiol 2015; 201: 487489.10.1016/j.ijcard.2015.08.119CrossRefGoogle ScholarPubMed
Martin, MH, Shahanavaz, S, Peng, LF, et al. Percutaneous transcatheter pulmonary valve replacement in children weighing less than 20 kg. Catheter Cardio Inte 2018; 91: 485494.Google ScholarPubMed
Shahanavaz, S, Qureshi, AM, Levi, DS, et al. Transcatheter pulmonary valve replacement with the melody valve in small diameter expandable right ventricular outflow tract conduits. Jacc-Cardiovasc Inte 2018; 11: 554564.10.1016/j.jcin.2018.01.239CrossRefGoogle ScholarPubMed
Garay, F, Pan, X, Zhang, YJ, Wang, C, Springmuller, D. Early experience with the venus p‐valve for percutaneous pulmonary valve implantation in native outflow tract. Neth Heart J 2017; 25: 7681.10.1007/s12471-016-0932-5CrossRefGoogle ScholarPubMed
Egbe, AC, Vallabhajosyula, S, Connolly, HM. Trends and outcomes of pulmonary valve replacement in tetralogy of fallot. Int J Cardiol 2020; 299: 136139.10.1016/j.ijcard.2019.07.063CrossRefGoogle ScholarPubMed
Schreiber, C, Horer, J, Vogt, M, et al. A new treatment option for pulmonary valvar insufficiency: first experiences with implantation of a self-expanding stented valve without use of cardiopulmonary bypass. Eur J Cardio-Thorac 2007; 31: 2630.10.1016/j.ejcts.2006.10.018CrossRefGoogle ScholarPubMed
Dittrich, S, Gloeckler, M, Arnold, R, et al. Hybrid pulmonary valve implantation: injection of a self-expanding tissue valve through the main pulmonary artery. Ann Thorac Surg 2008; 85: 632634.10.1016/j.athoracsur.2007.08.010CrossRefGoogle ScholarPubMed
Chen, Q, Turner, M, Caputo, M, Stoica, S, Marianeschi, S, Parry, A. Pulmonary valve implantation using self-expanding tissue valve without cardiopulmonary bypass reduces operation time and blood product use. J Thorac Cardiovasc Surg 2013; 145: 10401045.10.1016/j.jtcvs.2012.05.036CrossRefGoogle ScholarPubMed
Holoshitz, N, Ilbawi, MN, Amin, Z. Perventricular melody valve implantation in a 12 kg child. Catheter Cardiovasc Inte 2013; 82: 824827.Google Scholar
Hribernik, I, Thomson, J, Ho, A, et al. Comparative analysis of surgical and percutaneous pulmonary valve implants over a 20-year period. Eur J Cardio-Thorac 2022; 61: 572579.10.1093/ejcts/ezab368CrossRefGoogle ScholarPubMed
Zablah, JE, Misra, N, Gruber, D, Kholwadwala, D, Epstein, S. Comparison of patients undergoing surgical versus transcatheter pulmonary valve replacement: criteria for referral and mid-term outcome. Pediatr Cardiol 2017; 38: 603607.10.1007/s00246-016-1554-9CrossRefGoogle ScholarPubMed
Geva, T, Mulder, B, Gauvreau, K, et al. Preoperative predictors of death and sustained ventricular tachycardia after pulmonary valve replacement in patients with repaired tetralogy of fallot enrolled in the INDICATOR cohort. Circulation 2018; 138: 21062115.10.1161/CIRCULATIONAHA.118.034740CrossRefGoogle ScholarPubMed
Dorobantu, DM, Sharabiani, M, Taliotis, D, et al. Age over 35 years is associated with increased mortality after pulmonary valve replacement in repaired tetralogy of fallot: results from the UK national congenital heart disease audit database. Eur J Cardio-Thorac 2020; 58: 825831.10.1093/ejcts/ezaa069CrossRefGoogle ScholarPubMed
Li, WF, Pollard, H, Karimi, M, et al. Comparison of valvar and right ventricular function following transcatheter and surgical pulmonary valve replacement. Congenit Heart Dis 2018; 13: 140146.10.1111/chd.12544CrossRefGoogle ScholarPubMed