Hostname: page-component-cb9f654ff-c75p9 Total loading time: 0 Render date: 2025-09-01T19:09:08.224Z Has data issue: false hasContentIssue false

Neuromuscular fitness in adolescents with CHD: cross-sectional associations with clinical and body composition indicators

Published online by Cambridge University Press:  25 July 2025

Ana Carla P. Cavalcante
Affiliation:
Postgraduate Program in Nutrition, Faculty of Nutrition, Federal University of Alagoas, Maceió, Alagoas, Brazil
Isabela de C. Back
Affiliation:
Department of Pediatrics, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
Marylia Santos Pereira
Affiliation:
Postgraduate Program in Health Sciences, institute of biological and health sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
Paulo Henrique Manso
Affiliation:
Postgraduate Program in Child and Adolescent Health, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
Filipe Antônio de B. Sousa
Affiliation:
Postgraduate Program in Nutrition, Faculty of Nutrition, Federal University of Alagoas, Maceió, Alagoas, Brazil Postgraduate Program in Health Sciences, institute of biological and health sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil Institute of Physical Education and Sports, Federal University of Alagoas, Maceió, Alagoas, Brazil
Luiz Rodrigo A. de Lima*
Affiliation:
Postgraduate Program in Nutrition, Faculty of Nutrition, Federal University of Alagoas, Maceió, Alagoas, Brazil Postgraduate Program in Health Sciences, institute of biological and health sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil Institute of Physical Education and Sports, Federal University of Alagoas, Maceió, Alagoas, Brazil
*
Correspondence author: Luiz Rodrigo Augustemak de Lima; Email: luiz.lima@iefe.ufal.br.

Abstract

Introduction:

Low neuromuscular fitness is documented in adolescents with CHD and may be associated with clinical and morphological factors, indicating the need to assess strength in this population.

Objective:

To evaluate neuromuscular fitness with a multifactorial approach and its associations with other clinical and morphological factors in adolescents with CHD.

Methods:

This is an observational, cross-sectional study with adolescents with CHD, aged between 10 and 18 years. Neuromuscular fitness was calculated by the sum of the z-scores of four strength tests. Clinical factors of CHD were assessed by medical records and questionnaire. The morphological factors assessed were waist-to-height ratio, sum of skinfolds, and upper arm muscle area. Descriptive statistics, analysis of covariance, and linear regressions were performed.

Results:

Sixty adolescents with CHD participated, aged 12,7 ± 2,1 years, 55% girls. Maximum isometric strength was inadequate in 33%, jump height (power) in 33%, abdominal muscle strength resistance in 78%, and upper limb muscle strength resistance in 27%. Neuromuscular fitness was inadequate in 89% (n = 53) of adolescents with CHD. In the unadjusted regression, neuromuscular fitness was associated with arm muscle area (β = 0,12; p = 0,02; R2adj = 0,08) and in the unadjusted and adjusted regression it was lower in cyanotic (vs. acyanotic) CHDs (β = −1,76; p = 0,03 R2adj = 0,24).

Conclusion:

The findings reveal deficits in different presentations of musculoskeletal strength in a large proportion of adolescents with CHD, reinforcing the need to measure fitness from a broader perspective. Low muscle mass and the presence of cyanotic CHD may imply in reduced neuromuscular fitness in adolescents with CHD.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Cardoso, R, Rosa, M, Fabiano, R, et al. Cardiopatias congênitas e malformações extracardíacas. Rev Paul Pediatr 2013; 31: 243251.Google Scholar
Belo, WA, Oselame, GB, Neves, EB. Perfil clínico-hospitalar de crianças com cardiopatia congênita. Cadernos Saúde Coletiva 2016; 24: 216220.10.1590/1414-462X201600020258CrossRefGoogle Scholar
Changlani, TD, Jose, A, Sudhakar, A, et al. Outcomes of infants with prenatally diagnosed congenital heart disease delivered in a tertiary-care pediatric cardiac facility. Indian Pediatr 2015; 52: 852856.10.1007/s13312-015-0731-xCrossRefGoogle Scholar
Schaan, CW, Feltez, G, Schaan, BD, et al. Capacidade funcional em crianças e adolescentes com cardiopatia congênita. Revista Paulista de Pediatria 2019; 37: 6572.10.1590/1984-0462/;2019;37;1;00016CrossRefGoogle Scholar
da Niedermeyer, CC, Shizukuishi, MLY, Schaan, CW, et al. Peripheral and respiratory muscle strength in children and adolescents with CHD: systematic review and meta-analysis. Cardiol Young 2022; 32: 17281741.CrossRefGoogle ScholarPubMed
Barbosa, CCL, Romanzini, CLP, Batista, MB, et al. Neuromuscular fitness in early life and its impact on bone health in adulthood: a systematic review. Revista Paulista de Pediatria 2020; 38: e2019119.10.1590/1984-0462/2020/38/2019119CrossRefGoogle Scholar
Savage, PA, Shaw, AO, Miller, MS, et al. Effect of resistance training on physical disability in chronic heart failure. Med Sci Sports Exerc 2011; 43: 13791386.10.1249/MSS.0b013e31820eeea1CrossRefGoogle ScholarPubMed
Honicky, M, Cardoso, SM, de Lima, LRA, et al. Added sugar and trans fatty acid intake and sedentary behavior were associated with excess total-body and central adiposity in children and adolescents with congenital heart disease. Pediatr Obes 2020; 15: e12623.10.1111/ijpo.12623CrossRefGoogle ScholarPubMed
Ellemunter, H, Dumke, M, Steinkamp, G. Arm muscle area for the longitudinal assessment of nutritional status in paediatric patients with cystic fibrosis - a single centre experience. J Cyst Fibros 2022; 21: e122e128.10.1016/j.jcf.2021.10.006CrossRefGoogle ScholarPubMed
Marrodán Serrano, MD, Romero Collazos, JF, Moreno Romero, S, et al. [Handgrip strength in children and teenagers aged from 6 to 18 years: reference values and relationship with size and body composition]. An Pediatr (Barc) 2009; 70: 340348.10.1016/j.anpedi.2008.11.025CrossRefGoogle ScholarPubMed
IBGE. Censo demográfico 2022: Indicadores sociais e de desenvolvimento [Internet]. Rio de Janeiro. 2022. Available from: https://cidades.ibge.gov.br/brasil/al/maceio/panorama.Google Scholar
Google Maps. 2024. Available from: https://www.google.com.br/maps.Google Scholar
World Health Organization. Child and adolescent health and development: progress report 2009: highlights, 41.Google Scholar
Canadian society for exercise physiology. Canadian physical activity, fitness & lifestyle approach: CSEP - health & fitness program’s health-related appraisal & counselling strategy, 1996, 27.Google Scholar
He, H, Pan, L, Wang, D, et al. Normative values of hand grip strength in a large unselected Chinese population: evidence from the China national health survey. J Cachexia Sarcopenia Muscle 2023; 14: 13121321.10.1002/jcsm.13223CrossRefGoogle Scholar
Guedes, DP, Guedes, JERP. Manual prático para avaliação em educação física. 1ª ed. Brazilian. Manole, 2006, 131.Google Scholar
Ortega, FB, Artero, EG, Ruiz, JR, et al. Physical fitness levels among European adolescents: the HELENA study. Brit J Sport Med 2011; 45: 2029.10.1136/bjsm.2009.062679CrossRefGoogle ScholarPubMed
Plowman, SAMeredith, MD (eds.) Fitnessgram/Activitygram Reference Guide 4th edition. Dallas, TX: The Cooper Institute, 2013, 202.Google Scholar
Rikli, R, Jones, C. Escores normativos de aptidão funcional para idosos residentes na comunidade, com idades entre 60 e 94 anos. Jornal do envelhecimento e atividade física 1999; 7: 162181.Google Scholar
Burch, M, Dedieu, N. Congenital heart disease. The national society journals present selected research that has driven recent advances in clinical cardiology. Heart 2012; 98: 15551561.10.1136/heartjnl-2011-301538CrossRefGoogle ScholarPubMed
Warnes, CA, Liberthson, R, Danielson, GK, et al. Task force 1: the changing profile of congenital heart disease in adult life. J Am Coll Cardiol 2001; 37: 11701175.10.1016/S0735-1097(01)01272-4CrossRefGoogle ScholarPubMed
Stewart, A, Marfell-Jones, M. International standards for anthropometric assessment. ed. International Society for the Advancement of Kinanthropometry, Lower Hutt, New Zealand. 2011, 65.Google Scholar
Riebe D, Ehrman JK, Liguori G, Magal M (eds.) ACSM. Diretrizes do ACSM para testes de esforço e sua prescrição 10ª Edição Guanabara Koogan, Rio de Janeiro, 2018, 512.Google Scholar
Frisancho, AR. New norms of upper limb fat and muscle areas for assessment of nutritional status. Am J Clin Nutr 1981; 34: 25402545.10.1093/ajcn/34.11.2540CrossRefGoogle ScholarPubMed
Mirwald, RL, Baxter-Jones, AD, Bailey, DA, et al. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc 2002; 34: 689694.Google ScholarPubMed
Guedes, DP, Guedes, JERP. Medida da atividade física em jovens brasileiros: reprodutibilidade e validade do PAQ-C e do PAQ-A. Rev Bras Med Esporte 2015; 21: 425432.10.1590/1517-869220152106147594CrossRefGoogle Scholar
Voss, C, Dean, PH, Gardner, RF, et al. Validity and reliability of the physical activity questionnaire for children (PAQ-C) and adolescents (PAQ-A) in individuals with congenital heart disease. PLoS One 2017; 12: e0175806.10.1371/journal.pone.0175806CrossRefGoogle ScholarPubMed
Cohen, J. A power primer. Psychol Bull 1992; 112: 155159.10.1037/0033-2909.112.1.155CrossRefGoogle ScholarPubMed
Faul, F, Erdfelder, E, Buchner, A, et al. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 2009; 41: 11491160.10.3758/BRM.41.4.1149CrossRefGoogle Scholar
Pyykkönen, H, Rahkonen, O, Ratia, N, et al. Exercise prescription enhances maximal oxygen uptake and anaerobic threshold in young single ventricle patients with fontan circulation. Pediatr Cardiol 2022; 43: 969976.10.1007/s00246-021-02806-8CrossRefGoogle Scholar
Eshuis, G, van Duinen, H, Lelieveld, OTHM, et al. Decreased muscle strength in children with repaired tetralogy of fallot: relation with exercise capacity. J Am Heart Assoc 2023; 12: e027937.10.1161/JAHA.122.027937CrossRefGoogle ScholarPubMed
Ferrer-Sargues, FJ, Peiró-Molina, E, Cebrià Iranzo, IMÀ, et al. Effects of cardiopulmonary rehabilitation on the muscle function of children with congenital heart disease: a prospective cohort study. Int J Environ Res Public Health 2021; 18: 5870.10.3390/ijerph18115870CrossRefGoogle ScholarPubMed
Meyer, M, Wang, Y, Brudy, L, et al. Impaired grip strength in children with congenital heart disease. Arch Dis Child 2022; 107: 4751.10.1136/archdischild-2020-319955CrossRefGoogle ScholarPubMed
Takken, T, Giardini, A, Reybrouck, T, et al. Recommendations for physical activity, recreation sport, and exercise training in paediatric patients with congenital heart disease: a report from the exercise, basic & translational research section of the European association of cardiovascular prevention and rehabilitation, the european congenital heart and lung exercise group, and the association for European paediatric cardiology. Eur J Prev Cardiol 2012; 19: 10341065.10.1177/1741826711420000CrossRefGoogle ScholarPubMed
Bish, LT, George, I, Maybaum, S, et al. Myostatin is elevated in congenital heart disease and after mechanical unloading. Plos One 2011; 6: e23818.10.1371/journal.pone.0023818CrossRefGoogle ScholarPubMed
Hirono, T, Okudaira, M, Takeda, R, et al. Association between physical fitness tests and neuromuscular properties. Eur J Appl Physiol 2024; 124: 17031717.10.1007/s00421-023-05394-yCrossRefGoogle ScholarPubMed
Neidenbach, RC, Oberhoffer, R, Pieper, L, et al. The value of hand grip strength (HGS) as a diagnostic and prognostic biomarker in congenital heart disease. Cardiovasc Diagn Ther 2019; 9: S187S197.10.21037/cdt.2019.09.16CrossRefGoogle ScholarPubMed
de Rêgo, CS, Pinho, CPS. Força muscular em crianças e adolescentes hospitalizados com cardiopatia congênita. Nutrición Clínica y Dietética Hospitalaria 2020; 40(4): 7076.Google Scholar
Ross, FJ, Arakaki, LSL, Ciesielski, WA, et al. Assessment of muscle oxygenation in children with congenital heart disease. Pediatr Anesth 2019; 29: 850857.10.1111/pan.13668CrossRefGoogle ScholarPubMed
Moalla, W, Elloumi, M, Chamari, K, et al. Training effects on peripheral muscle oxygenation and performance in children with congenital heart diseases. Appl Physiol Nutr Metab 2012; 37: 621630.10.1139/h2012-036CrossRefGoogle ScholarPubMed
Malina, RM, Bouchard, C, Bar-Or, O. Crescimento, maturação e atividade física. Phorte São Paulo 2009, 107.Google Scholar
Inbar, O, Bar-Or, O, Skinner, JS. The wingate anaerobic test. Medicina; 1996, 69.Google Scholar
Born, D. 8. Cardiopatia congênita. Arquivos Brasileiros de Cardiologia 2009; 93: 130132.10.1590/S0066-782X2009001300008CrossRefGoogle Scholar
Chaves, KN, Pinto, WOD, Barreto, DML, et al. Perfil clínico-epidemiológico de crianças portadoras de cardiopatias congênitas submetidas à correção cirúrgica em serviço de referência no Estado de Alagoas. Caderno de Graduação - Ciências Biológicas e da Saúde - UNIT - ALAGOAS 2020; 6: 9999.Google Scholar
Dold, SK, Haas, NA, Apitz, C. Effects of sports, exercise training, and physical activity in children with congenital heart disease—A review of the published evidence. Children 2023; 10: 296.10.3390/children10020296CrossRefGoogle ScholarPubMed
Silva, DAS, Oliveira de, ACC. Impacto da maturação sexual na força de membros superiores e inferiores em adolescentes. Rev bras cineantropom desempenho hum 2010; 12: 144150.Google Scholar
Freitas, DL, Maia, JA, Beunen, GP, et al. Maturação esquelética e aptidão física em crianças e adolescentes madeirenses. RPCD 2003; 2003: 6175.10.5628/rpcd.03.01.61CrossRefGoogle Scholar
Lopes, VP, Malina, RM, Gomez-Campos, R, et al. Body mass index and physical fitness in Brazilian adolescents. J Pediat 2019; 95: 358365.10.1016/j.jped.2018.04.003CrossRefGoogle ScholarPubMed
Supplementary material: File

Cavalcante et al. supplementary material 1

Cavalcante et al. supplementary material
Download Cavalcante et al. supplementary material 1(File)
File 625.9 KB
Supplementary material: File

Cavalcante et al. supplementary material 2

Cavalcante et al. supplementary material
Download Cavalcante et al. supplementary material 2(File)
File 612.1 KB
Supplementary material: File

Cavalcante et al. supplementary material 3

Cavalcante et al. supplementary material
Download Cavalcante et al. supplementary material 3(File)
File 16.3 KB
Supplementary material: File

Cavalcante et al. supplementary material 4

Cavalcante et al. supplementary material
Download Cavalcante et al. supplementary material 4(File)
File 26.1 KB