Hostname: page-component-cb9f654ff-65tv2 Total loading time: 0 Render date: 2025-08-24T17:08:36.487Z Has data issue: false hasContentIssue false

Lung ultrasound score and its correlation with modified Ross score in infants with left to right shunt

Published online by Cambridge University Press:  24 July 2025

Anmol Rathore*
Affiliation:
Department of Pediatrics, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
Dheeraj Deo Bhatt
Affiliation:
Department of Pediatrics, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
Dinesh Kumar Yadav
Affiliation:
Department of Pediatrics, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
Parul Goyal
Affiliation:
Department of Bioichemistry, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
*
Corresponding author: Anmol Rathore; Email: anmolacms@gmail.com

Abstract

Background:

B lines in lung ultrasound are useful to diagnose heart failure in adults. This study was to done to correlate lung ultrasound score with heart failure severity in CHD.

Material and methods:

Fifty infants with left to right shunt underwent Ross scoring, measurement of NT pro BNP and lung ultrasound. Lung was divided into 14 zones (7 on each side); each zone was scored as: No B lines = 0, less than 3 B lines = 1, 3-7 B lines = 2, > 7 /or confluent B lines = 3. Total score was calculated by adding all scores. A modified ultrasound score was calculated by excluding scores of 1. Relationship between ultrasound scores and heart failure was assessed. Receiver operator curve (ROC) was generated to find a cut-off of ultrasound score to detect moderate or severe heart failure.

Results:

No correlation was found between either total or modified lung ultrasound score with the modified Ross score or NT pro BNP. A cut-off of total lung ultrasound score of 11 gave an accuracy of 68% with area under the curve (AUC) of 0.64 to detect moderate or severe heart failure.

Conclusion:

Utility of lung ultrasound in detecting severity of heart failure in infants with left to right shunts is limited at present due to its low accuracy and lack of standardised method of scoring.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Lichtenstein, D. Lung ultrasound in acute respiratory failure an introduction to the BLUE-protocol. Minerva Anestesiol 2009; 75: 313317.Google Scholar
Lichtenstein, DA. Ultrasound examination of the lungs in the intensive care unit. Pediatr Crit Care Med 2009; 10: 693698.10.1097/PCC.0b013e3181b7f637CrossRefGoogle ScholarPubMed
Pereda, MA, Chavez, MA, Hooper-Miele, CC, et al. Lung ultrasound for the diagnosis of pneumonia in children: a meta-analysis. Pediatrics 2015; 135: 714722.10.1542/peds.2014-2833CrossRefGoogle ScholarPubMed
Ma, H, Yan, W, Liu, J. Diagnostic value of lung ultrasound for neonatal respiratory distress syndrome: a meta-analysis and systematic review. Med Ultrason 2020; 22: 325333.10.11152/mu-2485CrossRefGoogle ScholarPubMed
Fei, Q, Lin, Y, Yuan, TM. Lung ultrasound, a better choice for neonatal pneumothorax: a systematic review and meta-analysis. Ultrasound Med Biol 2021; 47: 359369.10.1016/j.ultrasmedbio.2020.11.011CrossRefGoogle ScholarPubMed
Musolino, AM, Tomà, P, De Rose, C, et al. Ten years of pediatric lung ultrasound: a narrative review. Front. Physiol 2022; 12: 721951.10.3389/fphys.2021.721951CrossRefGoogle ScholarPubMed
Volpicelli, G, Elbarbary, M, Blaivas, M, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med 2012; 38: 577591.10.1007/s00134-012-2513-4CrossRefGoogle ScholarPubMed
Mézière, G, Biderman, P, Gepner, A, Barré, O. The comet-tail artifact, an ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med 1997; 156: 16401646.Google Scholar
Lichtenstein, DA. BLUE-protocol and FALLS-protocol: two applications of lung ultrasound in the critically ill, Chest. 2015; 147: 16591670,10.1378/chest.14-1313CrossRefGoogle ScholarPubMed
Li, H, Li, YD, Zhu, WW, et al. A simplified ultrasound comet tail grading scoring to assess pulmonary congestion in patients with heart failure. Biomed Res Int 2018; 2018: 110.Google ScholarPubMed
Zong, HF, Guo, G, Liu, J, Bao, LL, Yang, CZ. Using lung ultrasound to quantitatively evaluate pulmonary water content. Pediatr Pulmonol 2020; 55: 729739.10.1002/ppul.24635CrossRefGoogle ScholarPubMed
Noble, VE, Murray, AF, Capp, R, Sylvia-Reardon, MH, Steele, DJR, Liteplo, A. Ultrasound assessment for extravascular lung water in patients undergoing hemodialysis. Chest 2009; 135: 14331439.CrossRefGoogle ScholarPubMed
Girona-Alarcón, M, Cuaresma-González, A. Rodríguez-fanjul J et alLUCAS (lung ultrasonography in cardiac surgery) score to monitor pulmonary edema after congenital cardiac surgery in children. J Matern Fetal Neonatal Med 2022; 35: 12131218.10.1080/14767058.2020.1743660CrossRefGoogle ScholarPubMed
Kaskinen, AK, Martelius, L, Kirjavainen, T, Rautiainen, P, Andersson, S, Pitkänen, OM. Assessment of extravascular lung water by ultrasound after congenital cardiac surgery. Pediatr Pulm 2016; 52: 345352.10.1002/ppul.23531CrossRefGoogle ScholarPubMed
Picano, E, Pellikka, PA. Ultrasound of extravascular lung water: a new standard for pulmonary congestion. Eur Heart J 2016; 37 (27): 20972104.10.1093/eurheartj/ehw164CrossRefGoogle ScholarPubMed
Ross, RD. The Ross classification for heart failure in children after 25 years: a review and an age-stratified revision. Pediatr Cardiol 2012; 33: 12951300.10.1007/s00246-012-0306-8CrossRefGoogle Scholar
Rodríguez-Fanjul, J, Llop, AS, Balaguer, M, Bautista-Rodriguez, C, Hernando, JM, Jordan, I. JUsefulness of lung ultrasound in neonatal congenital heart disease (LUSNEHDI): lung ultrasound to assess pulmonary overflow in neonatal congenital heart disease. Pediatr Cardiol 2016; 37: 14821487.10.1007/s00246-016-1461-0CrossRefGoogle ScholarPubMed
Wu, L, Hou, Q, Lu, Y, et al. Feasibility of lung ultrasound to assess pulmonary overflow in congenital heart disease children. Pediatr Pulm 2018; 53: 15251532.10.1002/ppul.24169CrossRefGoogle ScholarPubMed
Laursen, CB, Sloth, E, Lambrechtsen, J, et al. Focused sonography of the heart, lungs, and deep veins identifies missed life-threatening conditions in admitted patients with acute respiratory symptoms. Chest 2013; 144: 18681875. doi: 10.1378/chest.13-0882.CrossRefGoogle ScholarPubMed
Davidsen, JR, Laursen, CB, Højlund, M, et al. Lung ultrasound to phenotype chronic lung allograft dysfunction in lung transplant recipients. A prospective observational study. J Clin Med 2021; 10: 1078.CrossRefGoogle ScholarPubMed
Haurylenka, D, Damantsevich, V, Filustsin, A, Damantsevich, A. Diagnostic value of 12-zone lung ultrasound protocol for diagnosing COVID-19-associated pneumonia in outpatients. J Ultrason 2021; 21: e271e276.10.15557/JoU.2021.0046CrossRefGoogle ScholarPubMed
Sugimoto, M, Manabe, H, Nakau, K, et al. The role of N-terminal Pro-B-type natriuretic peptide in the diagnosis of congestive heart failure in children - correlation with the heart failure score and comparison with B-type natriuretic peptide. Circ J 2010; 74: 9981005.10.1253/circj.CJ-09-0535CrossRefGoogle ScholarPubMed
Demi, L, Mento, F, Di Sabatino, A, et al. Lung ultrasound in COVID-19 and Post-COVID-19 patients, an evidence-based approach. J Ultrasound Med 2022; 41: 22032215.10.1002/jum.15902CrossRefGoogle ScholarPubMed
Jambrik, Z, Monti, S, Coppola, V, et al. Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am J Cardiol 2004; 93: 1265e70–1270.10.1016/j.amjcard.2004.02.012CrossRefGoogle ScholarPubMed
Cochran, ST, Gyepes, MT, Smith, LE. Obstruction of the airways by the heart and pulmonary vessels in infants. Pediatr Radiol 1977; 6 (2): 8187.10.1007/BF00973527CrossRefGoogle ScholarPubMed
Liang, HY, Liang, XW, Chen, ZY, et al. Ultrasound in neonatal lung disease. Quant Imaging Med Surg 2018; 8: 535546.10.21037/qims.2018.06.01CrossRefGoogle ScholarPubMed
Lam, E, Higgins, V, Zhang, L, et al. Normative values of high-sensitivity cardiac troponin T and N-terminal pro-B-type natriuretic peptide in children and adolescents: a study from the CALIPER. Cohort J Appl Lab 2021; 6: 344353.10.1093/jalm/jfaa090CrossRefGoogle ScholarPubMed
Song, IK, Kim, EH, Lee, JH, Ro, S, Kim, HS, Kim, JT. Effects of an alveolar recruitment manoeuvre guided by lung ultrasound on anaesthesia-induced atelectasis in infants: a randomised, controlled trial. Anaesthesia 2017; 72: 214222.10.1111/anae.13713CrossRefGoogle Scholar
Soldati, G, Smargiassi, A, Inchingolo, R, et al. Proposal for international standardization of the use of lung ultrasound for patients with COVID-19: a simple, quantitative, reproducible method. J Ultrasound Med 2020; 39: 14131419.10.1002/jum.15285CrossRefGoogle ScholarPubMed
Supplementary material: File

Rathore et al. supplementary material 1

Rathore et al. supplementary material
Download Rathore et al. supplementary material 1(File)
File 107.4 KB
Supplementary material: File

Rathore et al. supplementary material 2

Rathore et al. supplementary material
Download Rathore et al. supplementary material 2(File)
File 86.5 KB