Department of Mathematics and Statistics, McGill University, Burnside Hall room 1005, 805 Sherbrooke West, Montréal, Qc, Canada, H3A 2K6 e-mail: marc.desgroseilliers2@mail.mcgill.ca
Benoit Larose
Affiliation:
Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve West, Montréal, Qc, Canada, H3G 1M8 e-mail: larose@mathstat.concordia.ca
Claudia Malvenuto
Affiliation:
Dipartimento di Informatica, Università degli Studi “La Sapienza”, Via Salaria, 113, I–00198, Roma – Italy e-mail: claudia@di.uniroma1.it
Christelle Vincent
Affiliation:
Mathematics Department, University of Wisconsin-Madison, 480 Lincoln Drive, Madison WI 53706-1388 e-mail: vincent@math.wisc.edu
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We present some partial results concerning two conjectures of Schützenberger on evacuations of Young tableaux.
[1] Foata, D., Une propriété de vidage-remplissage des tableaux de Young. In: Combinatoire et représentation du groupe symétrique, Lecture Notes in Math. 579, Springer, Berlin, 1977, pp. 121–135.Google Scholar
2
[2] Gansner, E. R., On the equality of two plane partition correspondences. Discrete Math.30(1980), no. 2, 121–132. doi:10.1016/0012-365X(80)90114-4Google Scholar
3
[3] Haiman, M. D., Dual equivalence with applications, including a conjecture of Proctor. Discrete Math.99(1999), no. 1–3, 79–113. doi:10.1016/0012-365X(92)90368-PGoogle Scholar
4
[4] Knuth, D. E, The art of computer programming: Sorting and searching. Vol. 3.Second ed., Addison-Wesley, Reading, MA, 1988.Google Scholar
5
[5] Malvenuto, C. and Reutenauer, C., Evacuation of labelled graphs. Discrete Math.132(1994), no. 1–3, 137–143. doi:10.1016/0012-365X(92)00569-DGoogle Scholar
6
[6] Reifegerste, A., Permutation sign under the Robinson–Schensted correspondence. Ann. Comb.8(2004), no. 1, 103–112. doi:10.1007/s00026-004-0208-4Google Scholar
7
[7] Sagan, B. E., The symmetric group: representations, combinatorial algorithms and symmetric functions. Wadsworth and Brooks/Cole Mathematics Series.Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove, CA, 1991.Google Scholar
8
[8] Schützenberger, M.-P., Quelques remarques sur une construction de Schensted. Math. Scand.12(1963), 117–128.Google Scholar
[10] Schützenberger, M.-P., La correspondance de Robinson. In: Combinatoire et représentation du groupe symétrique, Lecture Notes in Math. 579, Springer, Berlin, 1976, pp. 59–113.Google Scholar
11
[11] Schützenberger, M.-P., Evacuations. In: Colloquio Internazionale sulle Teorie Combinatorie (Roma, 1973), Atti dei Convegni Lincei 17, Accad. Naz. Lincei, Rome, 1976, pp. 257–264.Google Scholar