Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We prove that the moduli space of smooth primitively polarized $\text{K3}$ surfaces of genus 33 is unirational.
[3]Bourbaki, N., Elements of mathematics. Algebra I. Springer-Verlag, Berlion, 2007. Google Scholar
[4]
[4]Dolgachev, I. V. and Kondo, S., Moduli spaces ofK3 surfaces and complex ball quotients. In: Arithmetic and geometry around hypergeometric functions, Prog. Math., 260, Birkhauser, Basel, 2007. pp. 43–100. http://dx.doi.Org/10.1007/978-3-7643-8284-1_3Google Scholar
[16]Mukai, S., Curves and K3 surfaces of genus eleven. In: Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), Lecture Notes in Pure and Appl. Math., 179, Dekker, New York, 1996, pp. 189–197.Google Scholar
[17]
[17]Mukai, S., Curves, K3 surfaces and Fano 3-folds of genus ^ 10. In: Algebraic geometry and commutative algebra, KinoKuniya, Tokyo, 1988, pp. 357–377.Google Scholar
[19]Mukai, S., New developments in Fano manifold theory related to the vector bundle method and moduli problems.(Japanese) Sugaku47(1995), no. 2,125-144. Google Scholar
[20]
[20]Mukai, S., On the moduli space of bundles on K3 surfaces. I. In: Vector bundles on algebraic varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud. Math., 11, Tata Inst. Fund. Res., Bombay, 1987, pp 341–413.Google Scholar
[21]
[21]Mukai, S., Polarized K3 surfaces of genus 18 and 20. In: Complex protective geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Note Ser., 179, Cambridge Univ. Press, Cambridge, 1992, pp. 264–276. http://dx.doi.Org/10.1017/CBO9780511662652.019Google Scholar
[22]
[22]Mukai, S., Polarized K3 surfaces of genus thirteen. In: Moduli spaces and arithmetic geometry, Adv. Stud. Pure Math., 45, Math. Soc. Japan, Tokyo, 2006, pp. 315–326.Google Scholar
[24]Nikulin, V. V., Integral symmetric bilinear forms and some of their geometric applications.(Russian) Izv. Akad. NaukSSSR Ser. Mat.43(1979), no. 1,111-177, 238.Google Scholar
[25]
[25]Nikulin, V. V., Finite automorphism groups ofKa'hler K3 surfaces.Trans. Moscow Math. Soc.38(1980), 71–135. Google Scholar