Hostname: page-component-54dcc4c588-sdd8f Total loading time: 0 Render date: 2025-10-06T05:27:38.615Z Has data issue: false hasContentIssue false

Existence-uniqueness theory and small-data decay for a reaction-diffusion model of wildfire spread

Published online by Cambridge University Press:  08 July 2025

A. George Morgan*
Affiliation:
Department of Mathematics, University of Toronto, 40 St. George St., Room 6290, Toronto, ON, M5S 2E4, Canada

Abstract

I examine some analytical properties of a nonlinear reaction-diffusion system that has been used to model the propagation of a wildfire. I establish global-in-time existence and uniqueness of bounded mild solutions to the Cauchy problem for this system given bounded initial data. In particular, this shows that the model does not allow for thermal blow-up. If the initial temperature and fuel density also satisfy certain integrability conditions, the spatial $L^2$-norms of these global solutions are uniformly bounded in time. Additionally, I use a bootstrap argument to show that small initial temperatures give rise to solutions that decay to zero as time goes to infinity, proving the existence of initial states that do not develop into traveling combustion waves.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Asensio, M. I. and Ferragut, L., On a wildland fire model with radiation . Int. J. Numer. Methods Eng. 54(2002), no. 1, 137157.10.1002/nme.420CrossRefGoogle Scholar
Babak, P., Bourlioux, A., and Hillen, T., The effect of wind on the propagation of an idealized forest fire . SIAM J. Appl. Math. 70(2009), no. 4, 13641388.10.1137/080727166CrossRefGoogle Scholar
Bebernes, J. and Eberly, D., Mathematical problems from combustion theory, volume 83 of Applied Mathematical Sciences, Springer-Verlag, New York, NY, 1989.10.1007/978-1-4612-4546-9CrossRefGoogle Scholar
Billingham, J., Phase plane analysis of one-dimensional reaction diffusion waves with degenerate reaction terms . Dyn. Stab. Syst. 15(2000), no. 1, 2333.10.1080/026811100281901CrossRefGoogle Scholar
Black, F., Schulze, P., and Unger, B., Efficient wildland fire simulation via nonlinear model order reduction . Fluids 6(2021), no. 280.Google Scholar
Evans, L. C., Partial differential equations. 2nd ed., volume 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2010.Google Scholar
Ghazaryan, A. and Jones, C. K. R. T., On the stability of high Lewis number combustion fronts . Discrete Contin. Dyn. Syst. 24(2009), no. 3, 809826.10.3934/dcds.2009.24.809CrossRefGoogle Scholar
Harris, C. R., Jarrod Millman, K., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández, J. del Río, M. Wiebe, P. P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E., Array programming with NumPy . Nature 585(2020), no. 7825, 357362.10.1038/s41586-020-2649-2CrossRefGoogle ScholarPubMed
Hochbruck, M. and Ostermann, A., Exponential integrators . Acta Numerica 19(2010), 209286.10.1017/S0962492910000048CrossRefGoogle Scholar
Johnston, A., Wildfire modeling with data assimilation. Master’s thesis, Brigham Young University, 2022. Available at scholarsarchive.byu.edu/etd/9788/ .Google Scholar
Lattimer, A., Borggaard, J., Gugercin, S., Luxbacher, K., and Lattimer, B., Computationally efficient wildland fire spread models, 2016.Google Scholar
Linares, F. and Ponce, G., Introduction to nonlinear dispersive equations. 2nd ed., Universitext, Springer, New York, NY, 2015.10.1007/978-1-4939-2181-2CrossRefGoogle Scholar
Mandel, J., Bennethum, L. S., Beezley, J. D., Coen, J. L., Douglas, C. C., Kim, M., and Vodacek, A., A wildland fire model with data assimilation . Math. Comput. Simul. 79(2008), no. 3, 584606.10.1016/j.matcom.2008.03.015CrossRefGoogle Scholar
Martin, J. and Hillen, T., The spotting distribution of wildfires . Appl. Sci. 6(2016), no. 177.10.3390/app6060177CrossRefGoogle Scholar
Mitra, K., Peng, Q., and Reisch, C., Studying wildfire fronts using advection-diffusion-reaction models. In: A. Sequeira, A. Silvestre, S. S. Valtchev, and J. Janela (eds.), Numerical Mathematics and Advanced Applications ENUMATH 2023, 2, Springer Nature, Switzerland, Cham, 2025, pp. 182192.10.1007/978-3-031-86169-7_19CrossRefGoogle Scholar
Morgan, A. G., Scattering for the quartic generalized Benjamin-Bona-Mahony equation. Preprint, 2024. arxiv preprint, available at arXiv:2402.09605.10.1016/j.na.2025.113909CrossRefGoogle Scholar
Razani, A., On the existence of premixed laminar flames . Bull. Austral. Math. Soc. 69(2004), no. 3, 415427.10.1017/S0004972700036194CrossRefGoogle Scholar
Reisch, C., Navas-Montilla, A., and Xian, I. Ö., Analytical and numerical insights into wildfire dynamics: exploring the advection–diffusion–reaction model . Comput. Math. Appl. 158(2024), 179198.10.1016/j.camwa.2024.01.024CrossRefGoogle Scholar
Tao, T., Nonlinear dispersive equations: Local and global analysis, volume 106 of CBMS Regional Conference Series in Mathematics. Conference Board of the Mathematical Sciences, Washington, DC, American Mathematical Society, Providence, RI, 2006.10.1090/cbms/106CrossRefGoogle Scholar
Thyng, K., Greene, C., Hetland, R., Zimmerle, H., and DiMarco, S., True colors of oceanography: Guidelines for effective and accurate colormap selection . Oceanography 29(2016), no. 3, 913.10.5670/oceanog.2016.66CrossRefGoogle Scholar
Trefethen, L. N., Spectral methods in MATLAB, volume 10 of Software, Environments, and Tools, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.10.1137/1.9780898719598CrossRefGoogle Scholar
Varas, F. and Vega, J. M., Linear stability of a plane front in solid combustion at large heat of reaction . SIAM J. Appl. Math. 62(2002), no. 5, 18101822.10.1137/S0036139901386417CrossRefGoogle Scholar
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J, Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy 1.0, Fundamental algorithms for scientific computing in python . Nat. Methods 17(2020), 261272.10.1038/s41592-019-0686-2CrossRefGoogle ScholarPubMed
Weber, R. O., Toward a comprehensive wildfire spread model . Int. J. Wildland Fire 1(1991), no. 4, 245248.10.1071/WF9910245CrossRefGoogle Scholar
Weber, R. O., Mercer, G. N., Sidhu, H. S., and Gray, B. F., Combustion waves for gases $(\mathrm{Le} = 1)$ and solids $(\mathrm{Le} \rightarrow \infty)$ . Proc. Roy. Soc. London Ser. A 453(1960), 11051118.10.1098/rspa.1997.0062CrossRefGoogle Scholar