No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let $\mathfrak{a}$ be an ideal of a commutative Noetherian ring
$R$ and
$M$ and
$N$ two finitely generated
$R$-modules. Our main result asserts that if
$R/\mathfrak{a}\,\le \,1$, then all generalized local cohomology modules
$H_{\mathfrak{a}}^{i}(M,\,N)$ are
$\mathfrak{a}$-cofinite.