Hostname: page-component-54dcc4c588-m259h Total loading time: 0 Render date: 2025-10-11T06:28:53.110Z Has data issue: false hasContentIssue false

Boundedness on Triebel–Lizorkin spaces for the Calderón commutator with rough kernel

Published online by Cambridge University Press:  12 March 2025

Rong Liang
Affiliation:
Department of Mathematics, School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, People’s Republic of China e-mail: rliang0219@163.com
Xiangxing Tao*
Affiliation:
Department of Mathematics, School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, People’s Republic of China e-mail: rliang0219@163.com

Abstract

In this article, the authors consider the boundedness on Triebel–Lizorkin spaces for the d-dimensional Calderón commutator defined by

$$ \begin{align*}T_{\Omega,a}f(x)=\mathrm{p.\,v.}\int_{\mathbb{R}^d}\frac{\Omega(x-y)}{|x-y|^{d+1}}\big(a(x)-a(y)\big)f(y){d}y,\end{align*} $$
where $\Omega $ is homogeneous of degree zero, integrable on $S^{d-1}$ and has a vanishing moment of order one, a is a Lipschitz function on $\mathbb {R}^d$. The authors proved that if
$$ \begin{align*}\sup_{\zeta\in S^{d-1}}\int_{S^{d-1}}|\Omega(\theta)|\log ^{\beta} \big(\frac{1}{|\theta\cdot\zeta|}\big)d\theta<\infty\end{align*} $$
with $\beta \in (1,\,\infty )$, then $T_{\Omega ,a}$ is bounded on Triebel–Lizorkin spaces $\dot {F}_{p}^{0,q}(\mathbb {R}^d)$ for $1+\frac {1}{2\beta -1}<p,q<2\beta $.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The research was supported by the NNSF of China under grants #12271483, #11971295, and #11771399.

References

Al-Qassem, H. M., Cheng, L. C., and Pan, Y., Boundedness of rough integral operators on Triebel-Lizorkin spaces . Publ. Mat. 5(2012), 261277.10.5565/PUBLMAT_56212_01CrossRefGoogle Scholar
Calderón, A. P., Commutators of singular integral operators . Proc. Nat. Acad. Sci. U.S.A. 53(1965), 10921099.10.1073/pnas.53.5.1092CrossRefGoogle ScholarPubMed
Calderón, A. P., Commutators, singular integrals on Lipschitz curves and application . In: Proceedings of the international congress of mathematicians , Helsinki, 1978, pp. 8695.Google Scholar
Chen, J., Fan, D., and Ying, Y., Singular integral operators on function spaces . J. Math. Anal. Appl. 276(2002), 691708.10.1016/S0022-247X(02)00419-5CrossRefGoogle Scholar
Chen, J., Hu, G., and Tao, X., ${L}^p({\mathbb{R}}^d)$ boundedness for the Calderón commutator with rough kernel . J. Geom. Anal. 33(2023), Article 14. https://doi.org/10.1007/s12220-022-01056-1.CrossRefGoogle Scholar
Chen, J., Hu, G., and Tao, X., ${L}^p({\mathbb{R}}^d)$ boundedness for a class of nonstandard singular integral operators . J. Fourier Anal. Appl. 30(2024), Article 50. https://doi.org/10.1007/s00041-024-10104-z.CrossRefGoogle Scholar
Chen, J. and Zhang, C., Boundedness of rough singular integral operators on the Triebel-Lizorkin spaces . J. Math. Anal. Appl. 337(2008), 10481052.CrossRefGoogle Scholar
Ding, Y. and Lai, X., Weak type $\left(1,1\right)$ bounded criterion for singular integral with rough kernel and its applications. Trans. Amer. Math. Soc. 371(2019), 16491675.10.1090/tran/7346CrossRefGoogle Scholar
Duoandikoetxea, J., Extrapolation of weights revisited: New proofs and sharp bounds . J. Funct. Anal. 260(2011), 18861901.10.1016/j.jfa.2010.12.015CrossRefGoogle Scholar
Fan, D. and Zhao, F., Littlewood-Paley functions and Triebel-Lizorkin spaces, and Besov spaces . Appl. Theory Appl. 37(2021), 267288.Google Scholar
Fefferman, C. and Stein, E. M., Some maximal inequalities . Amer. J. Math. 93(1971), 107115.10.2307/2373450CrossRefGoogle Scholar
Grafakos, L., Modern fourier analysis. 2nd ed., GTM, 250, Springer, New York, NY, 2008.Google Scholar
Grafakos, L. and Stefanov, A., ${L}^p$ bounds for singular integrals and maximal singular integrals with rough kernels . Indiana Univ. Math. J. 47(1998), 455469.10.1512/iumj.1998.47.1521CrossRefGoogle Scholar
Hofmann, S., Weighted norm inequalities for commutators of rough singular integrals . Indiana Univ. Math. J. 39(1990), 12751304.10.1512/iumj.1990.39.39057CrossRefGoogle Scholar
Hu, G. and Liu, J., Boundedness of the Calderón commutator with a rough kernel on Triebel-Lizorkin spaces . Acta Math. Sci. 43B(2023), 16181632.10.1007/s10473-023-0411-1CrossRefGoogle Scholar
Hu, G., Tao, X., Wang, Z., and Xue, Q., On the boundedness of nonstandard singular integral operators . J. Fourier Anal. Appl. 30(2024), Article 32. https://doi.org/10.1007/s00041-024-10086-y.CrossRefGoogle Scholar
Pan, Y., Wu, Q., and Yang, D., A remark on multilinear singular integrals with rough kernels . J. Math. Anal. Appl. 253(2001), 310321.CrossRefGoogle Scholar
Tao, X. and Hu, G., An estimate for the composition of rough singular integral operators . Can. Math. Bull. 64(2021), no. 4, 911922.10.4153/S0008439520000946CrossRefGoogle Scholar
Tao, X. and Hu, G., A bilinear sparse domination for the maximal singular integral operators with rough kernels . J. Geom. Anal. 34(2024), Article 162. https://doi.org/10.1007/s12220-024-01607-8.CrossRefGoogle Scholar