Hostname: page-component-54dcc4c588-trf7k Total loading time: 0 Render date: 2025-10-07T05:55:42.741Z Has data issue: false hasContentIssue false

$B_h$-sets of real and complex numbers

Published online by Cambridge University Press:  11 June 2025

Melvyn B. Nathanson*
Affiliation:
Department of Mathematics, Lehman College (CUNY), Bronx, NY 10468, United States

Abstract

Let $K = \mathbf {R}$ or $\mathbf {C}$. An n-element subset A of K is a $B_h$-set if every element of K has at most one representation as the sum of h not necessarily distinct elements of A. Associated with the $B_h$-set $A = \{a_1,\ldots , a_n\}$ are the $B_h$-vectors $\mathbf {a} = (a_1,\ldots , a_n)$ in $K^n$. This article proves that “almost all” n-element subsets of K are $B_h$-sets in the sense that the set of all $B_h$-vectors is a dense open subset of $K^n$.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Supported in part by PSC-CUNY Research Award Program grant 66197-00 54.

References

Bose, R. C. and Chowla, S., Theorems in the additive theory of numbers . Comment. Math. Helv. 37(1962/63), 141147.10.1007/BF02566968CrossRefGoogle Scholar
Cheng, Y. C., Greedy Sidon sets for linear forms . J. Number Theory. 266(2025), 225248.10.1016/j.jnt.2024.07.010CrossRefGoogle Scholar
Cilleruelo, J., Ruzsa, I., and Vinuesa, C., Generalized Sidon sets . Adv. Math. 225(2010), no. 5, 27862807.10.1016/j.aim.2010.05.010CrossRefGoogle Scholar
Cilleruelo, J., Ruzsa, I. Z., and Trujillo, C., Upper and lower bounds for finite ${B}_h[g]$ sequences. J. Number Theory 97(2002), no. 1, 2634.10.1006/jnth.2001.2767CrossRefGoogle Scholar
Dias da Silva, J. A. and Nathanson, M. B., Maximal Sidon sets and matroids . Discrete Math. 309(2009), no. 13, 44894494.10.1016/j.disc.2009.02.009CrossRefGoogle Scholar
Erdős, P. and Turán, P., On a problem of Sidon in additive number theory, and on some related problems . J. London Math. Soc. 16(1941), 212215.10.1112/jlms/s1-16.4.212CrossRefGoogle Scholar
Kolountzakis, M. N., The density of ${B}_h[g]$ sequences and the minimum of dense cosine sums. J. Number Theory 56(1996), no. 1, 411.10.1006/jnth.1996.0002CrossRefGoogle Scholar
Martin, G. and O’Bryant, K., Constructions of generalized Sidon sets . J. Combin. Theory Ser. A. 113(2006), no. 4, 591607.10.1016/j.jcta.2005.04.011CrossRefGoogle Scholar
Nathanson, M. B., On the ubiquity of Sidon sets . In: D. V. Chudnovsky, G. V. Chudnovsky, and M. B. Nathanson (eds.), Number theory (New York, 2003), Springer, New York, 2004, pp. 263272.10.1007/978-1-4419-9060-0_16CrossRefGoogle Scholar
Nathanson, M. B., Sidon sets and perturbations . In: M. B. Nathanson (ed.) Combinatorial and Additive Number Theory IV, Springer Proc. Math. Stat., 347, Springer, Cham, 2021, pp. 401408.10.1007/978-3-030-67996-5_22CrossRefGoogle Scholar
Nathanson, M. B., The Bose-Chowla argument for Sidon sets . J. Number Theory. 238(2022), 133146.10.1016/j.jnt.2021.08.005CrossRefGoogle Scholar
Nathanson, M. B., An inverse problem for finite Sidon sets , M. B. Nathanson (ed.) Combinatorial and additive number theory V, Springer Proc. Math. Stat., vol. 395, Springer, Cham, 2022, pp. 277285. MR 453983210.1007/978-3-031-10796-2_14CrossRefGoogle Scholar
Nathanson, M. B., Sidon sets for linear forms . J. Number Theory. 239(2022), 207227.10.1016/j.jnt.2021.11.011CrossRefGoogle Scholar
Nathanson, M. B., The third positive element in a greedy ${B}_h$ -set . Palestine J. Math. 14(2025), 213216.Google Scholar
Nathanson, M. B., $\mathbf{Q}$ -independence and the construction of ${B}_h$ -sets of integers and lattice points. Discrete Math. (2025), to appear.10.1016/j.disc.2025.114726CrossRefGoogle Scholar
Nathanson, M. B. and O’Bryant, K., The fourth positive element in the greedy ${B}_h$ -set . J. Integer Seq. 27(2024), Article 24.7.3, pages 110.Google Scholar
O’Bryant, K., A complete annotated bibliography of work related to Sidon sequences . Electron. J. Combin. DS11(2004), 39.Google Scholar
O’Bryant, K., Constructing thick ${B}_h$ -sets . J. Integer Seq. 27(2024), no. 1, Paper No. 24.1.2, 17.Google Scholar
Ruzsa, I. Z., Solving a linear equation in a set of integers . I. Acta Arith. 65(1993), no. 3, 259282.10.4064/aa-65-3-259-282CrossRefGoogle Scholar