No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let $R\,=\,{{\oplus }_{n\ge 0}}{{R}_{n}}$ be a graded Noetherian ring with local base ring
$\left( {{R}_{0}},{{\text{m}}_{0}} \right)$ and let
${{R}_{+}}\,=\,{{\oplus }_{n>0}}{{R}_{n}}$ . Let
$M$ and
$N$ be finitely generated graded
$R$ -modules and let
$\mathfrak{a}\,=\,{{\mathfrak{a}}_{0}}\,+\,{{R}_{+}}$ an ideal of
$R$ . We show that
$H_{\mathfrak{b}0}^{j}\,\left( H_{\mathfrak{a}}^{i}\left( M,\,N \right) \right)$ and
${H_{\mathfrak{a}}^{i}\left( M,\,N \right)}/{{{\mathfrak{b}}_{0}}H_{\mathfrak{a}}^{i}\left( M,\,N \right)}\;$ are Artinian for some
$i\text{ s}$ and
$j\,\text{s}$ with a specified property, where
${{\mathfrak{b}}_{o}}$ is an ideal of
${{R}_{0}}$ such that
${{\mathfrak{a}}_{0}}\,+\,{{\mathfrak{b}}_{0}}$ is an
${{\mathfrak{m}}_{0}}$ -primary ideal.