Hostname: page-component-54dcc4c588-smtgx Total loading time: 0 Render date: 2025-10-07T19:44:37.367Z Has data issue: false hasContentIssue false

Arthur packets for pure real forms of symplectic and special orthogonal groups

Published online by Cambridge University Press:  12 March 2025

Nicolas Arancibia Robert
Affiliation:
Laboratoire AGM - Analyse, Géométrie, Modélisation, CY Cergy Paris Université - site Saint Martin 2 av. Adolphe Chauvin 95302 Cergy-Pontoise Cedex, France e-mail: nicolas.arancibia-robert@cyu.fr
Paul Mezo*
Affiliation:
The School of Mathematics and Statistics, Carleton University, Ottawa, ON, K1S 5B6, Canada

Abstract

Arthur packets have been defined for pure real forms of symplectic and special orthogonal groups following two different approaches. The first approach, due to Arthur, Moeglin, and Renard uses harmonic analysis. The second approach, due to Adams, Barbasch, and Vogan uses microlocal geometry. We prove that the two approaches produce essentially equivalent Arthur packets. This extends previous work of the authors and J. Adams for the quasisplit real forms.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The second author was supported in part by the NSERC grant RGPIN-06361.

References

Achar, P. N., Perverse sheaves and applications to representation theory, Mathematical Surveys and Monographs, 258, American Mathematical Society, Providence, RI, 2021. MR433742310.1090/surv/258CrossRefGoogle Scholar
Adams, J., Arancibia Robert, N., and Mezo, P., Equivalent definitions of Arthur packets for real classical groups . Mem. Amer. Math. Soc. 300(2024), no. 1503, v+110.Google Scholar
Arthur, J., Unipotent automorphic representations: Conjectures . Astérisque 171–172(1989), 1371. MR1021499Google Scholar
Arthur, J., The endoscopic classification of representations, American Mathematical Society Colloquium Publications, 61, American Mathematical Society, Providence, RI, 2013. MR313565010.1090/coll/061CrossRefGoogle Scholar
Adams, J., Barbasch, D., and Vogan, D. A. Jr., The Langlands classification and irreducible characters for real reductive groups, Progress in Mathematics, 104, Birkhäuser Boston, Inc., Boston, MA, 1992. MR116253310.1007/978-1-4612-0383-4CrossRefGoogle Scholar
Arancibia, N., Mœglin, C., and Renard, D., Paquets d’Arthur des groupes classiques et unitaires . Ann. Fac. Sci. Toulouse Math. (6) 27(2018), no. 5, 10231105. MR391954710.5802/afst.1590CrossRefGoogle Scholar
Arancibia Robert, N. and Mezo, P., L-packets over strong real forms , Represent. Theory 28(2024), 2048. MR468581510.1090/ert/667CrossRefGoogle Scholar
Arancibia Robert, N. and Mezo, P., Equivalent definitions of Arthur packets for real unitary groups. Preprint, 2022. arXiv:2204.10715v2.Google Scholar
Adams, J. and Taïbi, O., Galois and Cartan cohomology of real groups . Duke Math. J. 167(2018), no. 6, 10571097.10.1215/00127094-2017-0052CrossRefGoogle Scholar
Borel, A., Grivel, P.-P., Kaup, R., Haefliger, A., Malgrange, B., and Ehlers, F., Algebraic  $D$ -modules, Perspectives in Mathematics, 2, Academic Press, Inc., Boston, MA, 1987.Google Scholar
Bernstein, J. and Lunts, V., Equivariant sheaves and functors, Lecture Notes in Mathematics, 1578, Springer-Verlag, Berlin, 1994.10.1007/BFb0073549CrossRefGoogle Scholar
Clifton, L. R., Cunningham, A. F., Moussaoui, A., Mracek, J., and Xu, B., Arthur packets for $p$ -adic groups by way of microlocal vanishing cycles of perverse sheaves, with examples . Mem. Amer. Math. Soc. 276(2022), no. 1353, ix+216. MR4391878Google Scholar
Christie, A. and Mezo, P., Twisted endoscopy from a sheaf-theoretic perspective . In: Geometric aspects of the trace formula, Springer, Cham, Switzerland, 2018, pp. 121161.10.1007/978-3-319-94833-1_4CrossRefGoogle Scholar
Cunningham, C. and Ray, M., Proof of Vogan’s conjecture on Arthur packets: irreducible parameters of $p$ -adic general linear groups . Manuscripta Math. 173(2024), nos. 3–4, 10731097. MR470476710.1007/s00229-023-01490-7CrossRefGoogle Scholar
Goresky, M. and MacPherson, R., Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 14, Springer-Verlag, Berlin, 1988.10.1007/978-3-642-71714-7CrossRefGoogle Scholar
Jacobson, N., Basic algebra. I. 2nd ed., W. H. Freeman and Company, New York, NY, 1985. MR780184Google Scholar
Kaletha, T., Rigid inner forms of real and $p$ -adic groups . Ann. Math. (2) 184(2016), no. 2, 559632.10.4007/annals.2016.184.2.6CrossRefGoogle Scholar
Knapp, A. W., Lie groups beyond an introduction. 2nd ed., Progress in Mathematics, 140, Birkhäuser Boston, Inc., Boston, MA, 2002. MR1920389Google Scholar
Knus, M.-A., Merkurjev, A., Rost, M., and Tignol, J.-P., The book of involutions, American Mathematical Society Colloquium Publications, 44, American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits. MR163277910.1090/coll/044CrossRefGoogle Scholar
Kottwitz, R. E. and Shelstad, D., Foundations of twisted endoscopy . Astérisque 255(1999), vi+190. MR1687096Google Scholar
Langlands, R. P., On the classification of irreducible representations of real algebraic groups . In: Representation theory and harmonic analysis on semisimple Lie groups, American Mthematical Society, Providence, RI, 1989, pp. 101170. MR101189710.1090/surv/031/03CrossRefGoogle Scholar
Langlands, R. P. and Shelstad, D., On the definition of transfer factors . Math. Ann. 278(1987), nos. 1–4, 219271. MR90922710.1007/BF01458070CrossRefGoogle Scholar
Mezo, P., Character identities in the twisted endoscopy of real reductive groups . Mem. Amer. Math. Soc. 222(2013), no. 1042, vi+94.Google Scholar
Moeglin, C. and Renard, D., Sur les paquets d’Arthur des groupes classiques et unitaires non quasi-d’eployés . In: Relative aspects in representation theory. Langlands functoriality and automorphic forms, Springer, Cham, Switzerland, 2018, pp. 341361. MR383970210.1007/978-3-319-95231-4_8CrossRefGoogle Scholar
Moeglin, C. and Renard, D., Sur les paquets d’Arthur des groupes classiques réels . J. Eur. Math. Soc. (JEMS) 22(2020), no. 6, 18271892. MR4092900CrossRefGoogle Scholar
Shelstad, D., $L$ -indistinguishability for real groups . Math. Ann. 259(1982), no. 3, 385430. MR66120610.1007/BF01456950CrossRefGoogle Scholar
Shelstad, D., Tempered endoscopy for real groups. III. Inversion of transfer and $L$ -packet structure . Represent. Theory 12(2008), 369402. MR244828910.1090/S1088-4165-08-00337-3CrossRefGoogle Scholar
Shelstad, D., On geometric transfer in real twisted endoscopy . Ann. Math. (2) 176(2012), no. 3, 19191985. MR2979862CrossRefGoogle Scholar
Springer, T. A., Reductive groups . In: Automorphic forms, representations and $L$ -functions. Proceedings of symposia in pure mathematics, Oregon State University, Corvallis, Oregon, 1977 Part 1, American Mathematical Society, Providence, RI, 1979, pp. 327. MR546587CrossRefGoogle Scholar
Springer, T. A., Linear algebraic groups. 2nd ed., Progress in Mathematics, 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR1642713 10.1007/978-0-8176-4840-4CrossRefGoogle Scholar
Vogan, D. A. Jr., Representations of real reductive Lie groups, Progress in Mathematics, 15, Birkhäuser, Boston, MA, 1981.Google Scholar