Hostname: page-component-54dcc4c588-hp6zs Total loading time: 0 Render date: 2025-10-10T18:30:48.584Z Has data issue: false hasContentIssue false

Forearm P-31 Nuclear Magnetic Resonance Spectroscopy Studies in Oculopharyngeal Muscular Dystrophy

Published online by Cambridge University Press:  18 September 2015

Douglas W. Zochodne*
Affiliation:
Lasalle Building, Departments of Medicine and Physiology, Queen’s University, Kingston
Wilma J. Koopman
Affiliation:
Department of Clinical Neurological Sciences, University of Western Ontario, London
Norbert J. Witt
Affiliation:
Department of Clinical Neurological Sciences, University of Western Ontario, London
Terry Thompson
Affiliation:
Department of Radiology and Nuclear Medicine, Victoria Hospital, London
Albert A. Driedger
Affiliation:
Department of Radiology and Nuclear Medicine, Victoria Hospital, London
Dennis Gravelle
Affiliation:
Department of Radiology and Nuclear Medicine, Victoria Hospital, London
Charles F. Bolton
Affiliation:
Department of Clinical Neurological Sciences, University of Western Ontario, London
*
Lasalle Bldg., Room #206, Queen’s University, Kingston, Ontario, Canada K7L 3N6
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Five siblings with autosomal dominant oculopharyngeal muscular dystrophy (OPMD) underwent P-31 Nuclear Magnetic Resonance Spectroscopy studies of forearm flexor muscles. Mean values of PCr/(PCr + Pi) in the patients were reduced (p = 0.01) and pH elevated (p = 0.02) in resting muscle when compared to controls. During exercise PCr/(PCr + Pi) fell quickly to values less than controls (p < 0.0001) despite submaximal exercise output and developed exercise-induced acidosis which exceeded that of controls (p = 0.05). Acidosis recovered slowly despite relatively normal recovery of PCr/(PCr + Pi) following exercise. Within the patient group, however, one member had normal resting, exercise and recovery values. The studies suggest that OPMD is a more widespread disorder of striated muscle than clinically appreciated. The pattern of findings observed in OPMD differs from those identified in denervation, disuse and mitochondrial myopathy.

Information

Type
Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1992

References

1.Taylor, EW.Progressive vagus-glossopharyngeal paralysis with ptosis: a contribution to the group of family diseases. J Nerv Ment Dis 1915; 42: 129139.CrossRefGoogle Scholar
2.Barbeau, A.The syndrome of hereditary late onset ptosis and dysphagia in French Canada. In: Kuhn, E, ed. Progressive Muscular Dystrophy: Myotonia, Myasthenia. Berlin: Springer, Verlag 1966: 102109.Google Scholar
3.Fried, K, Arlozorov, A, Spira, R.Autosomal recessive oculopharyngeal muscular dystrophy. J Med Genet 1975; 12: 416418.CrossRefGoogle ScholarPubMed
4.Julien, J, Vital, C, Vallat, JM, Vallat, M, Le Blanc, M.Oculopharyngeal muscular dystrophy. A case with abnormal mitochondria and ‘fingerprint’ inclusions. J Neurol Sci 1974; 21: 165169.CrossRefGoogle ScholarPubMed
5.Morgan-Hughes, JA, Mair, WGP.Atypical muscle mitochondria in oculoskeletal myopathy. Brain 1973; 96: 215224.CrossRefGoogle ScholarPubMed
6.Pratt, MF, Meyers, PK.Oculopharyngeal muscular dystrophy: recent ultrastructural evidence for mitochondrial abnormalities. Laryngoscope 1986; 96: 368373.CrossRefGoogle ScholarPubMed
7.Zochodne, DW, Thompson, RT, Driedger, AA, et al. Metabolic changes in human muscle denervation: topical 31-P NMR spectroscopy studies. Mag Res Med 1988; 7: 373383.CrossRefGoogle Scholar
8.Arnold, DL, Taylor, DJ, Radda, GK.Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Ann Neurol 1985; 18: 189196.CrossRefGoogle ScholarPubMed
9.Taylor, DJ, Bore, PJ, Styles, P, Gadian, DG, Radda, GK.Bioenergetics of intact human muscle. A 31-P nuclear magnetic resonance study. Mol Biol Med 1983; 1: 7794.Google Scholar
10.Wilkie, DR, Dawson, MJ, Edwards, RHT, Gordon, RE, Shaw, D.31-P NMR studies of resting muscle in normal human subjects. In: Pollack, G, Sugi, H, eds. Second Symposium on Cross-bridge Mechanisms in Muscle Contraction. Plenum NY, 1984; 333346.CrossRefGoogle Scholar
11.Victor, M, Hayes, R, Adams, RD.Oculopharyngeal muscular dystrophy. N Engl J Med 1962; 267: 12671272.CrossRefGoogle ScholarPubMed
12.Murphy, SF, Drachman, DB.The oculopharyngeal syndrome. JAMA 1968; 203: 10031008.CrossRefGoogle ScholarPubMed
13.Blumbergs, PC, Chin, D, Burrow, D, Burns, RJ, Rice, JP.Oculopharyngeal dystrophy: clinicopathological study of an Australian family. Clin Exp Neurol 1983; 19: 102109.Google ScholarPubMed
14.Duranceau, CA, Letendre, J, Clermont, RJ, Levesque, H, Barbeau, A.Oropharyngeal dysphagia in patients with oculopharyngeal muscular dystrophy. Can J Surg 1978; 21: 326329.Google ScholarPubMed
15.Isenberg, DA, Kahn, P.Familial late onset oculopharyngeal muscular dystrophy. Postgrad Med J 1981; 57: 4143.CrossRefGoogle ScholarPubMed
16.Coquet, M, Vallat, JM, Vital, C, et al. Nuclear inclusions in oculopharyngeal dystrophy. An ultrastructural study of six cases. J Neurol Sci 1983; 60: 151156.CrossRefGoogle ScholarPubMed
17.Smith, TW, Chad, D.Intranuclear inclusions in oculopharyngeal dystrophy. Muscle Nerve 1984; 7: 339340.Google ScholarPubMed
18.Tome, FMS, Fardeau, M.Nuclear inclusions in oculopharngeal dystrophy. Acta Neuropathol (Berl) 1980; 49: 8587.CrossRefGoogle Scholar
19.Little, BW, Perl, DP.Oculopharyngeal muscular dystrophy. J Neurol Sci 1982; 53: 145148.CrossRefGoogle ScholarPubMed
20.Fukuhara, N, Kumamoto, T, Tsubaki, T, Mayuzmi, T, Nitta, H.Oculopharyngeal muscular dystrophy and distal myopathy. Acta Neurol Scand 1982; 65: 458467.CrossRefGoogle ScholarPubMed
21.Vita, G, Dattola, R, Santoro, M, Messina, C.Familial oculopharyngeal muscular dystrophy with distal spread. J Neurol 1983; 230: 5764.CrossRefGoogle ScholarPubMed
22.Edwards, RHT, Dawson, MJ, Wilkie, DR, Gordon, RE, Shaw, D.Clinical use of nuclear magnetic resonance in the investigation of myopathy. Lancet 1982; 1: 725730.CrossRefGoogle ScholarPubMed
23.Edwards, RHT, Griffiths, RD, Cady, EB.Topical magnetic resonance for the study of muscle metabolism in human myopathy. Clin Physiol 1985; 5:93109.CrossRefGoogle Scholar
24.Griffiths, RD, Cady, EB, Edwards, RHT, Wilkie, DR.Muscle energy metabolism in Duchenne dystrophy studied by 31-P-NMR: controlled trials show no effect of allopurinol or ribose. Muscle Nerve 1985; 8:760767.CrossRefGoogle ScholarPubMed
25.Younkin, DP, Berman, P, Sladky, J, et al. 31-PNMR studies in Duchenne muscular dystrophy: age related metabolic changes. Neurology 1987; 37: 165169.CrossRefGoogle Scholar
26.Argov, Z, Bank, WJ, Maris, J, Peterson, P, Chance, B.Bioenergetic heterogeneity of human mitochondrial myopathies: phosphorus magnetic resonance spectroscopy study. Neurology 1987; 37: 257262.CrossRefGoogle ScholarPubMed
27.Gadian, D, Radda, G, Ross, B, et al. Examination of a myopathy by phosphorus nuclear magnetic resonance. Lancet 1981; 2: 774775.CrossRefGoogle ScholarPubMed
28.Hayes, DJ, Hilton-Jones, D, Arnold, DL, et al. A mitochondrial encephalomyopathy. A combined 31-P magnetic resonance and biochemical investigation. J Neurol Sci 1985; 71: 105118.Google Scholar
29.Zochodne, DW, Thompson, RT, Driedger, AA, et al. Topical 31-P NMR spectroscopy exercise studies in mild human forearm denervation. Can J Neurol Sci 1986; 13: 173.Google Scholar
30.Bessman, SP, Carpenter, CL.The creatine-creatine phosphate energy shuttle. Ann Rev Biochem 1985; 54: 831862.CrossRefGoogle ScholarPubMed
31.Chance, B.Applications of 31-P NMR to clinical biochemistry. Ann NY Acad Sci 1984; 428: 318332.CrossRefGoogle Scholar
32.Edstrom, L, Hultman, E, Sahlin, K, Sjoholm, H.The contents of highenergy phosphates in different fibre types in skeletal muscles from rat, guinea-pig and man. J Physiol 1982; 332: 4758.CrossRefGoogle ScholarPubMed
33.Johnson, MA, Polgar, J, Weightman, D, Appleton, D.Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 1973; 18: 111129.CrossRefGoogle ScholarPubMed
34.Tome, FMS, Fardeau, M.Ocular myopathies. In: Engel, AG, Banker, BQ, eds. Myology. New York: McGraw-Hill 1986; 13271347.Google Scholar
35.Moon, RB, Richards, JH.Determination of intracellular pH by 31-P magnetic resonance. J Biol Chem 1973; 248: 72767278.CrossRefGoogle Scholar
36.Arnold, DL, Matthews, PM, Radda, GK.Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31-P NMR. Mag Res Med 1984; 1:307315.CrossRefGoogle Scholar
37.Newman, RJ, Bore, PJ, Chan, L, et al. Nuclear magnetic resonance studies of forearm muscle in Duchenne dystrophy. Br Med J 1982; 284: 10721074.CrossRefGoogle ScholarPubMed
38.Hahn, AF, Thompson, RT, Gravelle, D, Koopman, WJ.Exercise intolerance and myoglobinuria in Becker’s muscular dystrophy. Can J Neurol Sci 1989; 16:238.Google Scholar
39.Probst, A, Tackmann, W, Stoeckli, HR, Jerusalem, F, Ulrich, J.Evidence for a chronic axonal atrophy in oculopharyngeal ‘muscular dystrophy’. Acta Neuropathol (Berl) 1982; 57: 209216.CrossRefGoogle ScholarPubMed
40.Schmitt, HP, Krause, KH.An autopsy study of a familial oculopharyngeal muscular dystrophy (OPMD) with distal spread and neurogenic involvement. Muscle Nerve 1981; 4: 296305.CrossRefGoogle ScholarPubMed
41.Arnold, DL, Radda, GK, Bore, PJ, Styles, P, Taylor, DJ.Excessive intracellular acidosis of skeletal muscle on exercise in a patient with a post-viral exhaustion/fatigue syndrome. Lancet 1984; 1: 13671369.CrossRefGoogle Scholar