Hostname: page-component-54dcc4c588-gwv8j Total loading time: 0 Render date: 2025-10-13T15:45:10.991Z Has data issue: false hasContentIssue false

Smooth solutions to the Christoffel–Minkowski problem in hyperbolic space

Published online by Cambridge University Press:  15 September 2025

Yating Lei
Affiliation:
School of Mathematics, Hunan University , Changsha 410082, Hunan Province, P.R. China. e-mail: leiyating@hnu.edu.cn zhouyutian@hnu.edu.cn
Lu Xu*
Affiliation:
School of Mathematics, Hunan University , Changsha 410082, Hunan Province, P.R. China. e-mail: leiyating@hnu.edu.cn zhouyutian@hnu.edu.cn
Yutian Zhou
Affiliation:
School of Mathematics, Hunan University , Changsha 410082, Hunan Province, P.R. China. e-mail: leiyating@hnu.edu.cn zhouyutian@hnu.edu.cn
*

Abstract

In this article, we consider a fully nonlinear equation associated with the Christoffel–Minkowski problem in hyperbolic space. By using the full rank theorem, we establish the existence of h-convex solutions when the prescribed functions on the right-hand side are under some appropriate assumption.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The authors are supported by NSFC No. 12171143 and NSFC No. 12571214.

References

Aleksandrov, A., Über konvexe Flächen mit ebenen Schattengrenzen . Rec. Math. N.S. [Mat. Sbornik] 5(1939), no. 47, 309316.Google Scholar
Andrews, B., Chen, X., and Wei, Y., Volume preserving flow and Alexandrov-Fenchel type inequalities in hyperbolic space . J. Eur. Math. Soc. 23(2021), 24672509.Google Scholar
Caffarelli, L. and Friedman, A., Convexity of solutions of some semilinear elliptic equations . Duke Math. J. 52(1985), 431455.Google Scholar
Caffarelli, L., Nirenberg, L., and Spruck, J., The Dirichlet problem for nonlinear second-order elliptic equations. III: Functions of the eigenvalues of the Hessian . Acta Math. 155(1985), nos. 3–4, 261301.Google Scholar
Chen, L., Smooth solutions to the Christoffel problem in ${\mathbb{H}}^{n+1}$ . Preprint, arXiv:2406.09449.Google Scholar
Cheng, S. and Yau, S., On the regularity of the solution of the $n$ -dimensional Minkowski problem . Commun. Pure Appl. Math. 29(1976), no. 5, 495516.Google Scholar
Chou, K. and Wang, X., A variation theory of the Hessian equation . Commun. Pure Appl. Math. 54(2001), no. 9, 10291064.Google Scholar
Christoffel, E., Über die Bestimmung der gestalt einer krummen Oberfläche durch lokale Messungen auf derselben . J. Reine Angew. Math. 64(1865), 193209.Google Scholar
Espinar, J., Gálvez, J., and Mira, P., Hypersurfaces in ${\mathbb{H}}^{n+1}$ and conformally invariant equations: The generalized Christoffel and Nirenberg problems. J. Eur. Math. Soc. 11(2009), 903939.Google Scholar
Firey, W., The determination of convex bodies from their mean radius of curvature functions . Mathematika 14(1967), 114.Google Scholar
Firey, W., Christoffel problem for general convex bodies . Mathematik 15(1968), 721.Google Scholar
Gerhardt, C., Curvature problems, Series in Geometry and Topology, 39, International Press, Somerville, MA, 2006.Google Scholar
Gidas, B. and Spruck, J., Global and local behavior of positive solutions of nonlinear elliptic equations . Commun. Pure Appl. Math. 34(1981), no. 4, 525598.Google Scholar
Gilbarg, D. and Trudinger, N., Elliptic partial differential equations of second order. Springer, Springer-Verlag, Berlin, 2015.Google Scholar
Guan, P. and Ma, X., The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equation . Invent. Math. 151(2003), 553577.Google Scholar
Guan, P., Ma, X., and Zhou, F., The Christoffel-Minkowski problem III: Existence and convexity of admissible solutions . Commun. Pure Appl. Math. 59(2006), no. 9, 13521376.Google Scholar
Hou, Z., Ma, X., and Wu, D., A second order estimate for complex Hessian equations on a compact Kähler manifold . Math. Res. Lett. 17(2010), no. 3, 547561.Google Scholar
Hu, Y., Li, H., and Wei, Y., Locally constrained curvature flows and geometric inequalities in hyperbolic space . Math. Annalen. 382(2022), 14251474.Google Scholar
Hu, Y., Li, H., and Xu, B., The horospherical p-Christoffel-Minkowski and prescribed p-shifted Weingarten curvature problems in hyperbolic space. Preprint, arXiv:2411.17345.Google Scholar
Hu, Y., Wei, Y., and Zhou, T., A Heintze-Karcher type inequality in hyperbolic space. Preprint, arXiv:2306.14591v1.Google Scholar
Huisken, G. and Sinestrari, C., Convexity estimates for mean curvature flow and singularities of mean convex surfaces . Acta Math. 183(1999), no. 1, 4570.Google Scholar
Ivochkina, N., Solution of the curvature problem for equation of curvature of order m . Soviet Math. Dokl. 37(1988), no. 2, 322325. translated from Dokl. Akad. Nauk SSSR, 299 (1988), no. 1, 35–38.Google Scholar
Krylov, N., On the general notion of fully nonlinear second-order elliptic equations . Trans. Am. Math. Soc. 347(1995), no. 3, 857895.Google Scholar
Li, H. and Wan, Y., The Christoffel problem in the hyperbolic plane . Adv. Appl. Math. 150(2023), Article no. 102557, 17 pp.Google Scholar
Li, H. and Xu, B., Hyperbolic $p$ -sum and horospherical $p$ -Brunn-Minkowski theory in hyperbolic space. Preprint, arXiv:2211.06875v1.Google Scholar
Li, Y., Degree theory for second order nonlinear elliptic operators and its applications . Commun. Partial Differ. Equ. 14(1989), 15411578.Google Scholar
Li, Y., Interior gradient estimates for solutions of certain fully nonlinear elliptic equations . J. Differ. Equ. 90(1991), no. 1, 172185.Google Scholar
Lieberman, G., Second order parabolic differential equations. World Scientific, Iowa State, 1996.Google Scholar
Luo, T. and Wei, Y., The horospherical p-Christoffel-Minkowski problem in hyperbolic space. Preprint, arXiv:2411.17328.Google Scholar
Nirenberg, L., The Weyl and Minkowski problems in differential geometry in the large . Commun. Pure Appl. Math. 6(1953), 337394.Google Scholar
Obata, M., The conjectures of conformal transformations of Riemannian manifolds . Bull. Amer. Math. Soc. 77(1971), 265270.Google Scholar
Pogorelov, A., On existence of a convex surface with a given sum of the principal radii of curvature . Uspehi Matem. Nauk (N.S.) 8(1953), no. 3(55), 127130.Google Scholar
Pogorelov, A., The Minkowski multidimensional problem, Scripta Series in Mathematics, Winston, Washington, DC, 1978. translated from the Russian by Vladimir Oliker, Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978.Google Scholar
Spruck, J., Geometric aspects of the theory of fully nonlinear elliptic equations . Clay Math. Proc. 2(2005), 283309.Google Scholar
Wang, X., Wei, Y., and Zhou, T., Shifted inverse curvature flows in hyperbolic space . Calc. Var. 62(2023), no. 3, 93.Google Scholar