Hostname: page-component-84c44f86f4-t57w2 Total loading time: 0 Render date: 2025-10-14T21:03:23.324Z Has data issue: false hasContentIssue false

Fiber functors and reconstruction of Hopf algebras

Published online by Cambridge University Press:  03 June 2024

Simon Lentner
Affiliation:
Fachbereich Mathematik, Universität Hamburg, Bundesstrassee 55, D20, 146 Hamburg, Deutschland e-mail: simon.lentner@uni-hamburg.de
Martín Mombelli*
Affiliation:
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, CIEM – CONICET, Medina Allende s/n, (5000) Ciudad Universitaria, Córdoba, Argentina

Abstract

The main objective of the present paper is to present a version of the Tannaka–Krein type reconstruction theorems: if $F:{\mathcal B}\to {\mathcal C}$ is an exact faithful monoidal functor of tensor categories, one would like to realize ${\mathcal B}$ as category of representations of a braided Hopf algebra $H(F)$ in ${\mathcal C}$. We prove that this is the case iff ${\mathcal B}$ has the additional structure of a monoidal ${\mathcal C}$-module category compatible with F, which equivalently means that F admits a monoidal section. For Hopf algebras, this reduces to a version of the Radford projection theorem. The Hopf algebra is constructed through the relative coend for module categories. We expect this basic result to have a wide range of applications, in particular in the absence of fiber functors, and we give some applications. One particular motivation was the logarithmic Kazhdan–Lusztig conjecture.

Information

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The work of M.M. was partially supported by Secyt-U.N.C., Foncyt, and CONICET Argentina. S.L. thanks T. Gannon and T. Creutzig for hospitality at the University of Alberta and the Alexander von Humboldt Foundation for financial support via the Feodor Lynen Fellowship.

References

Andruskiewitsch, N. and Schneider, H.-J., On the classification of finite-dimensional pointed Hopf algebras . Ann. of Math. 171(2010), no. 1, 375417.CrossRefGoogle Scholar
Angiono, I. and Garcia Iglesias, A., Pointed Hopf algebras: a guided tour to the liftings . Rev. Colomb. Math. 53(2019), 144.CrossRefGoogle Scholar
Bespalov, Y. N., Crossed modules, quantum braided groups and ribbon structures . Theor. Math. Phys. 103(1995), 368387.CrossRefGoogle Scholar
Bortolussi, N. and Mombelli, M., (Co)ends for representations of tensor categories . Theory Appl. Categ. 37(2021), no. 6, 144188.Google Scholar
Bruguières, A. and Virelizier, A., Hopf monads . Adv. Math. 215(2007), 679733.CrossRefGoogle Scholar
Creutzig, T., Lentner, S., and Rupert, M., Characterizing braided tensor categories associated to logarithmic vertex operator algebras. Preprint, arXiv:2104.13262.Google Scholar
Creutzig, T., Lentner, S., and Rupert, M.. An algebraic theory for logarithmic Kazhdan–Lusztig correspondences. Preprint, arXiv:2306.11492.Google Scholar
Deligne, P., Catgories tannakiennes . In: The Grothendieck festschrift, Vol. II, Progress in Mathematics, 87, Birkhauser, Boston, MA, 1990, pp. 111195.Google Scholar
Douglas, C. L., Schommer-Pries, C., and Snyder, N., The balanced tensor product of module categories . Kyoto J. Math. 59(2019), no. 1, 167179.CrossRefGoogle Scholar
Etingof, P. and Ostrik, V., Finite tensor categories . Mosc. Math. J. 4(2004), no. 3, 627654.CrossRefGoogle Scholar
Gannon, T. and Negron, C., Quantum SL(2) and logarithmic vertex operator algebras at (p,1)-central charge. Preprint, arXiv:2104.12821.Google Scholar
Husemöller, D., Lectures on tensor categories. Notes, Haverford College.Google Scholar
Liu, Z. and Zhu, S., Centers of braided tensor categories . J. Algebra 614(2023), 115153.CrossRefGoogle Scholar
Lyubashenko, V., Modular transformations for tensor categories . J. Pure Appl. Algebra 98(1995), 279327.CrossRefGoogle Scholar
Lyubashenko, V., Invariants of 3-manifolds and projective representations of mapping class groups via quantum groups at roots of unity . Commun. Math. Phys. 172(1995), no. 3, 467516.CrossRefGoogle Scholar
Lyubashenko, V., Squared Hopf algebras and reconstruction theorems . Banach Cent. Publ. 40(1997), 111137.CrossRefGoogle Scholar
Lyubashenko, V., Squared Hopf algebras, American Mathematical Society, Providence, RI, 1999.CrossRefGoogle Scholar
Majid, S., Reconstruction theorems and rational conformal field theories . Int. J. Modern Phys. A 6(1991), 43594374.CrossRefGoogle Scholar
Majid, S., Braided groups . J. Pure Appl. Algebra 86(1993), 187221.CrossRefGoogle Scholar
Majid, S., Cross products by braided groups and Bosonization . J. Algebra 163(1994), 165190.CrossRefGoogle Scholar
Radford, D. E., The structure of Hopf algebras with a projection . J. Algebra 92(1985), 322374.CrossRefGoogle Scholar
Rivano, N. S., Catégories tannakiennes . Bull. Soc. Math. France 100(1972), 417430.CrossRefGoogle Scholar
Schauenburg, P., Tannaka duality for arbitrary Hopf algebras, Algebra Berichte, 66, Reinhard Fischer, München, (1992).Google Scholar
Shimizu, K., The monoidal center and the character algebra . J. Pure Appl. Algebra 221(2017), no. 9, 23382371.CrossRefGoogle Scholar
Shimizu, K., On unimodular finite tensor categories . Int. Math. Res. Not. 2017(2017), 277322.Google Scholar
Takeuchi, M., Finite Hopf algebras in braided tensor categories . J. Pure Appl. Algebra 138(1999), no. 1, 5982.CrossRefGoogle Scholar