Hostname: page-component-54dcc4c588-sq2k7 Total loading time: 0 Render date: 2025-10-11T19:48:23.120Z Has data issue: false hasContentIssue false

Determination of period matrix of double of surface with boundary via its DN map

Published online by Cambridge University Press:  07 April 2025

Dmitrii Korikov*
Affiliation:
St.Petersburg Department of Steklov Mathematical Institute, Saint Petersburg, Russia

Abstract

As is well-known, the conformal class of a surface M with boundary is determined by its Diriclet-to-Neumann (DN) map $\Lambda $. We propose an algorithm for determination of the b-period matrix $\mathbb {B}$ of the (Schottky) double of M via $\Lambda $.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahlfors, L. V., Lectures on quasiconformal mappings. 2nd ed., University Lecture Series, 38, American Mathematical Society, Providence, RI, 2006.Google Scholar
Belishev, M. I., The Calderon problem for two-dimensional manifolds by the BC-method . SIAM J. Math. Anal. 35(2003), no. 1, 172182. https://doi.org/10.1137/S0036141002413919 Google Scholar
Belishev, M. I. and Korikov, D. V., On stability of determination of Riemann surface from its DN-map . J. Inverse Ill-Posed Probl. 31(2023), no. 2, 159176. https://doi.org/10.1515/jiip-2022-0024 Google Scholar
Belishev, M. I. and Korikov, D. V., On characterization of Hilbert transform of riemannian surface with boundary . Complex Anal. Oper. Theory 16(2022), no. 10, 122. https://doi.org/10.1007/s11785-021-01185-5 Google Scholar
Belishev, M. I. and Korikov, D. V., Stability of determination of Riemann surface from its Dirichlet-to-Neumann map in terms of Teichmüller distance . SIAM J. Math. Anal. 55(2023), no. 6, 74267448. https://doi.org/10.1137/22M1526496 Google Scholar
Belishev, M. and Sharafutdinov, V., Dirichlet to Neumann operator on differential forms . Bull. Sci. Math. 132(2008), no. 2, 128145. https://doi.org/10.1016/j.bulsci.2006.11.003 Google Scholar
Fricke, F. and Klein, F., Vorlesungen über die Theorie der automorphen Funktionen. Teubner, Leipzig, 1897.Google Scholar
Gardiner, F. P., Teichmüller theory and quadratic differentials, Pure & Applied Mathematics, John Wiley & Sons, New York, NY, 1987.Google Scholar
Griffiths, P. and Harris, J., Riemann surfaces and algebraic curves . In: Griffiths, P. and Harris, J. (eds.), Principles of algebraic geometry, Wiley, New York, 1994. https://doi.org/10.1002/9781118032527.ch2 Google Scholar
Henkin, G. and Michel, V., On the explicit reconstruction of a Riemann surface from its Dirichlet–Neumann operator . Geom. Funct. Anal. 17(2007), 116155. https://doi.org/10.1007/s00039-006-0590-7 Google Scholar
Korikov, D. V., On the topology of surfaces with a common boundary and close DN-maps . J Math Sci. 283(2024), 549555. https://doi.org/10.1007/s10958-024-07291-x Google Scholar
Korikov, D. V., Stability estimates in determination of non-orientable surface from its Dirichlet-to-Neumann map . Complex Anal. Oper. Theory 18(2024), no. 29, 146. https://doi.org/10.1007/s11785-023-01475-0 Google Scholar
Lassas, M. and Uhlmann, G., On determining a Riemannian manifold from the Dirichlet-to-Neumann map . Ann. Sci. Ec. Norm. Sup. 34(2001), no. 5, 771787.Google Scholar
Lee, J. M. and Uhlmann, G., Determining anisotropic real-analytic conductivities by boundary measurements . Commun. Pure Appl. Math. 42(1989), 10971112.Google Scholar
Milne, J. S., Jacobian varieties . In: Cornell, G. and Silverman, J. H. (eds.), Arithmetic geometry, Springer, New York, NY, 1986. https://doi.org/10.1007/978-1-4613-8655-1_7 Google Scholar
Michel, V., The two-dimensional inverse conductivity problem . J. Geom. Anal. 30(2020), 27762842. https://doi.org/10.1007/s12220-018-00139-2 Google Scholar
Murphy, G. J., ${C}^{\ast}$ -algebras and operator theory. Academic Press, London, 1990.Google Scholar
Nag, S. and Nafissi, M., The complex analytic theory of Teichmüller spaces. Wiley-Interscience, New York, 1988.Google Scholar
Narasimhan, R., Torelli’s theorem . In: Compact Riemann surfaces, Lectures in Mathematics ETH Zürich, R. Narasimhan (eds.), Birkhäuser, Basel, 1992. https://doi.org/10.1007/978-3-0348-8617-8_18 Google Scholar
Shonkwiler, C., Poincare duality angles for Riemannian manifolds with boundary. Inverse Problems, Vol. 29, no. 4, IOP Publishing Ltd, Philadelphia, 2013, pp. 116.Google Scholar
Torelli, R., Sulle varietà di Jacobi . Rend. della Reale Accad. Naz. dei Lincei. 22(1913), no. 5, 98103.Google Scholar