Hostname: page-component-6bb9c88b65-kfd97 Total loading time: 0 Render date: 2025-07-25T23:54:44.126Z Has data issue: false hasContentIssue false

DIMENSIONS OF SETS AVOIDING APPROXIMATE NONTRIVIAL ZEROS OF LINEAR PATTERNS

Published online by Cambridge University Press:  21 July 2025

ZHIGANG TIAN
Affiliation:
School of Mathematics, https://ror.org/0530pts50 South China University of Technology , Guangzhou 510640, PR China e-mail: 202010106099@mail.scut.edu.cn
LEI SHANG*
Affiliation:
College of Sciences, https://ror.org/05td3s095 Nanjing Agricultural University , Nanjing 210095, PR China

Abstract

Given any finite collection $\mathcal {G}$ of translation-invariant linear equations of the form

$$ \begin{align*} \sum_{i=1}^{v} m_i x_i = m_0 x_0, \end{align*} $$

where $(m_0, m_1, \ldots , m_v) \in \mathbb {N}^{v+1}$, $m_0 = \sum _{i=1}^{v} m_i$ and $v \ge 2$, we estimate lower and upper bounds of the supremum of the Hausdorff dimension of sets on the real line that uniformly avoid nontrivial zeros of any f in $\mathcal {G}$.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This work was supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20241541).

References

Behrend, F., ‘On sets of integers which contain no three terms in arithmetical progression’, Proc. Natl. Acad. Sci. USA 32 (1946), 331332.CrossRefGoogle Scholar
Bennett, M., Iosevich, A. and Taylor, K., ‘Finite chains inside thin subsets of ${\mathbb{R}}^d$ ’, Anal. PDE 9 (2016), 597614.10.2140/apde.2016.9.597CrossRefGoogle Scholar
Broderick, R., Fishman, L. and Simmons, D., ‘Quantitative results using variants of Schmidt’s game: dimension bounds, arithmetic progressions, and more’, Acta Arith. 188 (2019), 289316.10.4064/aa171127-8-11CrossRefGoogle Scholar
Chan, V., Łaba, I. and Pramanik, M., ‘Finite configurations in sparse sets’, J. Anal. Math. 128 (2016), 289335.10.1007/s11854-016-0010-3CrossRefGoogle Scholar
Denson, J., Pramanik, M. and Zahl, J., ‘Large sets avoiding rough patterns’, in: Harmonic Analysis and Applications, Springer Optimization and Its Applications, 168 (ed. Rassias, M. T.) (Springer, Cham, 2021), 5975.10.1007/978-3-030-61887-2_4CrossRefGoogle Scholar
Fraser, J., Saito, K. and Yu, H., ‘Dimensions of sets which uniformly avoid arithmetic progressions’, Int. Math. Res. Not. IMRN 14 (2019), 44194430.10.1093/imrn/rnx261CrossRefGoogle Scholar
Fraser, J., Shmerkin, P. and Yavicoli, A., ‘Improved bounds on the dimensions of sets that avoid approximate arithmetic progressions’, J. Fourier Anal. Appl. 27 (2021), Article no. 4, 14 pages.10.1007/s00041-020-09807-wCrossRefGoogle Scholar
Fraser, R. and Pramanik, M., ‘Large sets avoiding patterns’, Anal. PDE 5 (2018), 10831111.CrossRefGoogle Scholar
Harangi, V., Keleti, T., Kiss, G., Maga, P., Máthé, A., Mattila, P. and Strenner, B., ‘How large dimension guarantees a given angle?’, Monatsh. Math. 171 (2013), 169187.10.1007/s00605-012-0455-0CrossRefGoogle Scholar
Keleti, T., ‘A 1-dimensional subset of the reals that intersects each of its translates in at most a single point’, Real Anal. Exchange 24 (1998), 843844.10.2307/44153003CrossRefGoogle Scholar
Keleti, T., ‘Construction of one-dimensional subsets of the reals not containing similar copies of given patterns’, Anal. PDE 1 (2008), 2933.CrossRefGoogle Scholar
Łaba, I. and Pramanik, M., ‘Arithmetic progressions in sets of fractional dimension’, Geom. Funct. Anal. 19 (2009), 429456.10.1007/s00039-009-0003-9CrossRefGoogle Scholar
Liang, Y. and Pramanik, M., ‘Fourier dimension and avoidance of linear patterns’, Adv. Math. 399 (2022), Article no. 108252, 50 pages.10.1016/j.aim.2022.108252CrossRefGoogle Scholar
Maga, P., ‘Full dimensional sets without given patterns’, Real Anal. Exchange 36 (2010/11), 7990.10.14321/realanalexch.36.1.0079CrossRefGoogle Scholar
Máthé, A., ‘Sets of large dimension not containing polynomial configurations’, Adv. Math. 316 (2017), 691709.10.1016/j.aim.2017.01.002CrossRefGoogle Scholar
Roth, K., ‘On certain sets of integers’, J. Lond. Math. Soc. (2) 28 (1953), 104109.CrossRefGoogle Scholar
Shmerkin, P., ‘Salem sets with no arithmetic progressions’, Int. Math. Res. Not. IMRN 7 (2017), 19291941.Google Scholar
Szemerédi, E., ‘On sets of integers containing no $k$ elements in arithmetic progression’, Acta Arith. 27 (1975), 199245.10.4064/aa-27-1-199-245CrossRefGoogle Scholar
Yavicoli, A., ‘Thickness and a gap lemma in ${\mathbb{R}}^d$ ’, Int. Math. Res. Not. IMRN 19 (2023), 1645316477.10.1093/imrn/rnac319CrossRefGoogle Scholar