Hostname: page-component-6bb9c88b65-vpjdr Total loading time: 0 Render date: 2025-07-26T13:58:32.821Z Has data issue: false hasContentIssue false

Asymptotical smoothness and its applications

Published online by Cambridge University Press:  17 April 2009

Wiesława Kaczor
Affiliation:
Instytut Matematyki, University M. Curie-Sklodowska, 20–031 Lublin, Poland e-mail: wkaczor@golem.umcs.lublin.pl, bsprus@golem.umcs.lublin.pl
Stanisław Prus
Affiliation:
Instytut Matematyki, University M. Curie-Sklodowska, 20–031 Lublin, Poland e-mail: wkaczor@golem.umcs.lublin.pl, bsprus@golem.umcs.lublin.pl
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we introduce the notion of asymptotical smoothness of a Banach space and show that it is strongly related to the Kadec-Klee property. This notion is then applied to obtain new theorems about weak convergence of almost orbits of three various types of semigroups of mappings.

Information

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1]Aksoy, A.G. and Khamsi, M.A., Nonstandard methods in fixed point theory (Springer-Verlag, New York, 1990).CrossRefGoogle Scholar
[2]Banach, S., Œuvres, Éditions Scientifiques de Pologne, vol. II (PWN, Warsaw, 1979).Google Scholar
[3]Bessaga, C. and Pełczyński, A., ‘On bases and unconditional convergence of series in Banach spaces’, Studia Math. 17 (1958), 151164.CrossRefGoogle Scholar
[4]Castillo, J.M.F. and González, M., Three space problem in Banach space theory, Lecture Notes in Mathematics 1667 (Springer-Verlag, Berlin, 1997).CrossRefGoogle Scholar
[5]Day, M.M., Normed linear spaces (Springer-Verlag, Berlin, Göttingen, Heidelberg, 1962).CrossRefGoogle Scholar
[6]Deville, R., Godefroy, G. and Zizler, V., Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics 64 (Longman Scientific and Technical, Harlow, 1993).Google Scholar
[7]Falset, J. García, Kaczor, W., Kuczumow, T. and Reich, S., ‘Weak convergence theorems for asymptotically nonexpansive mappings and semigroups’, Nonlinear Anal. 43 (2001), 377401.CrossRefGoogle Scholar
[8]James, R.C., ‘A non-reflexive Banach space isometric to its second conjugate’, Proc. Nat. Acad. Sci U.S.A. 37 (1951), 174177.CrossRefGoogle ScholarPubMed
[9]Kaczor, W., ‘Weak convergence of almost orbits of asymptotically nonexpansive commutative semigroups’, (preprint).Google Scholar
[10]Kaczor, W., Kuczumow, T. and Reich, S., ‘A mean ergodic theorem for nonlinear semigroups which are asymptotically nonexpansive in the intermediate sense’, J. Math. Anal. Appl. 246 (2000), 127.CrossRefGoogle Scholar
[11]Kaczor, W., Kuczumow, T. and Reich, S., ‘A mean ergodic theorem for mappings which are asymptotically nonexpansive in the intermediate sense’, Nonlinear Anal. 47 (2001), 27312742.CrossRefGoogle Scholar
[12]Kaczor, W. and Sşkowski, T., ‘Weak convergence of iteration process for nonexpansive mappings and nonexpansive semigroups’, Ann. Univ. Mariae Curie-Sklodowska, Sect. A 52 (1998), 7177.Google Scholar
[13]Kim, J.K. and Li, G., ‘Asymptotic behaviour for an almost-orbit of nonexpansive semigroups in Banach spaces’, Bull. Austral. Math. Soc. 61 (2000), 345350.CrossRefGoogle Scholar
[14]Kirk, W.A., ‘An iteration process for nonexpansive mappings with applications to fixed point theory in product spaces’, Proc. Amer. Math. Soc. 107 (1989), 411415.CrossRefGoogle Scholar
[15]Li, G., ‘Weak convergence and non-linear ergodic theorems for reversible semigroups of non-lipschitzian mappings’, J. Math. Anal. Appl. 206 (1997), 451464.Google Scholar
[16]Li, G., ‘Asymptotic behavior for commutative semigroups of asymptotically nonexpansive-type mappings’, Nonlinear Anal. 42 (2000), 175183.CrossRefGoogle Scholar
[17]Li, G. and Sims, B., ‘Ergodic theorem and strong convergence of averaged approximations for non-lipschitzian mappings in Banach spaces’, (preprint).Google Scholar
[18]Maluta, E., Prus, S. and Szczepanik, M., ‘On Milman's moduli for Banach spaces’, Abst. Appl. Anal. 6 (2001), 115129.CrossRefGoogle Scholar
[19]Milman, V.D., ‘Geometric theory of Banach spaces. Part II, Geometry of the unit sphere’, (Russian), Usp. Mat. Nauk. 26 (1971), 73149. English translation: Russian Math. Surv. 26 (1971), 79–163.Google Scholar
[20]Oka, H., ‘Nonlinear ergodic theorems for commutative semigroups of asymptotically non-expansive mappings’, Nonlinear Anal. 7 (1992), 619635.CrossRefGoogle Scholar
[21]Opial, Z., ‘Weak convergence of the sequence of successive approximations for nonexpansive mappings’, Bull. Amer. Math. Soc. 73 (1967), 591597.CrossRefGoogle Scholar
[22]Prus, S., ‘On infinite dimensional uniform smoothness of Banach spaces’, Comment. Math. Univ. Carolinae 40 (1999), 97105.Google Scholar
[23]Prus, S., ‘Geometrical background of metric fixed point theory’, in Handbook of Metric Fixed Point Theory, (Kirk, W. A. and Sims, B., Editors) (Kluwer Academic Publishers, Dordrecht, 2001), pp. 93132.CrossRefGoogle Scholar
[24]Singer, I., Bases in Banach spaces II (Springer-Verlag, Berlin, 1981).CrossRefGoogle Scholar
[25]Talagrand, M., ‘Renormages de quelques C (K)Israel J. Math. 54 (1986), 327334.CrossRefGoogle Scholar